Al-Rahmi, W., Aldraiweesh, A., Yahaya, N., Kamin, Y. B., & Zeki, A. M. (2019). Massive open online courses (moocs): Data on higher education. Data in Brief, 22, 118–125.
Article
Google Scholar
Alapont, J., Bella-Sanjuán, A., Ferri, C., Hernández-Orallo, J., Llopis-Llopis, J., & Ramírez-Quintana, M. (2005). Specialised tools for automating data mining for hospital management. In: Proceedings of First East European Conference on Health Care Modelling and Computation, pp 7–19.
Alboaneen, D., Almelihi, M., Alsubaie, R., Alghamdi, R., Alshehri, L., & Alharthi, R. (2022). Development of a web-based prediction system for students’ academic performance. Data, 7(2), 21.
Article
Google Scholar
Albreiki, B., Habuza, T., Shuqfa, Z., Serhani, M. A., Zaki, N., & Harous, S. (2021). Customized rule-based model to identify at-risk students and propose rational remedial actions. Big Data and Cognitive Computing, 5(4), 71.
Article
Google Scholar
Albreiki, B., Zaki, N., & Alashwal, H. (2021). A systematic literature review of student’performance prediction using machine learning techniques. Education Sciences, 11(9), 552.
Article
Google Scholar
Alhassan, A., Zafar, B., & Mueen, A. (2020). Predict students’ academic performance based on their assessment grades and online activity data. International Journal of Advanced Computer Science and Applications (IJACSA) 11(4), 185–194.
Altujjar, Y., Altamimi, W., Al-Turaiki, I., & Al-Razgan, M. (2016). Predicting critical courses affecting students performance: A case study. Procedia Computer Science, 82, 65–71.
Article
Google Scholar
Alturki, R. A., et al. (2016). Measuring and improving student performance in an introductory programming course. Informatics in Education-An International Journal, 15(2), 183–204.
Article
Google Scholar
Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58–65.
Article
Google Scholar
Borrella, I., Caballero-Caballero, S., & Ponce-Cueto, E. (2022). Taking action to reduce dropout in moocs: Tested interventions. Computers & Education, 179(104), 412.
Google Scholar
Buenaño-Fernández, D., Gil, D., & Luján-Mora, S. (2019). Application of machine learning in predicting performance for computer engineering students: A case study. Sustainability, 11(10), 2833.
Article
Google Scholar
Cornell-Farrow, S., & Garrard, R. (2020). Machine learning classifiers do not improve the prediction of academic risk: Evidence from australia. Communications in Statistics: Case Studies, Data Analysis and Applications, 6(2), 228–246.
Google Scholar
Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247–256.
Article
Google Scholar
Dekker, I., De Jong, E. M., Schippers, M. C., Bruijn-Smolders, D., Alexiou, A., Giesbers, B., et al. (2020). Optimizing students’ mental health and academic performance: AI-enhanced life crafting. Frontiers in Psychology, 11, 1063.
Article
Google Scholar
Evangelista, E. (2021). A hybrid machine learning framework for predicting students’ performance in virtual learning environment. International Journal of Emerging Technologies in Learning (iJET) 16(24), 255–272.
Fahd, K., Venkatraman, S., Miah, S. J., & Ahmed, K. (2022). Application of machine learning in higher education to assess student academic performance, at-risk, and attrition: A meta-analysis of literature. Education and Information Technologies, 27, 3743–3775.
Goga, M., Kuyoro, S., & Goga, N. (2015). A recommender for improving the student academic performance. Procedia-Social and Behavioral Sciences, 180, 1481–1488.
Article
Google Scholar
Gong, B., Nugent, J. P., Guest, W., Parker, W., Chang, P. J., Khosa, F., & Nicolaou, S. (2019). Influence of artificial intelligence on canadian medical students’ preference for radiology specialty: Anational survey study. Academic Radiology, 26(4), 566–577.
Article
Google Scholar
Gupta, S. K., Antony, J., Lacher, F., & Douglas, J. (2020). Lean six sigma for reducing student dropouts in higher education-an exploratory study. Total Quality Management & Business Excellence, 31(1–2), 178–193.
Article
Google Scholar
Ha, D. T., Loan, P. T. T., Giap, C. N., & Huong, N. . TL. (2020). An empirical study for student academic performance prediction using machine learning techniques. International Journal of Computer Science and Information Security (IJCSIS) 18(3), 21–28.
Hasan, R., Palaniappan, S., Mahmood, S., Abbas, A., Sarker, K. U., & Sattar, M. U. (2020). Predicting student performance in higher educational institutions using video learning analytics and data mining techniques. Applied Sciences, 10(11), 3894.
Article
Google Scholar
Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., & Navarro-Colorado, B. (2019). A systematic review of deep learning approaches to educational data mining. Complexity, 2019(1):1–22.
Hu, Y. H., Lo, C. L., & Shih, S. P. (2014). Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior, 36, 469–478.
Article
Google Scholar
Hussain, M., Zhu, W., Zhang, W., & Abidi, SMR. (2018). Student engagement predictions in an e-learning system and their impact on student course assessment scores. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2018/6347186
Iatrellis, O., Savvas, I. K., Fitsilis, P., & Gerogiannis, V. C. (2021). A two-phase machine learning approach for predicting student outcomes. Education and Information Technologies, 26(1), 69–88.
Article
Google Scholar
Inyang, U. G., Eyoh, I. J., Robinson, S. A., & Udo, E. N. (2019). Visual association analytics approach to predictive modelling of students’ academic performance. International Journal of Modern Education & Computer Science 11(12), 1–13.
Koprinska, I., Stretton, J., & Yacef, K. (2015). Students at risk: Detection and remediation. In: EDM, pp 512–515.
Kruck, S., & Lending, D. L. D. (2003). Predicting academic performance in an introductory college introductory college-level is course level is course. Information Technology, Learning, and Performance Journal, 21(2), 9.
Google Scholar
Kuzilek, J., Hlosta, M., Herrmannova, D., Zdrahal, Z., Vaclavek, J., & Wolff, A. (2015). Ou analyse: Analysing at-risk students at the open university. Learning Analytics Review, 1–16.
Li, K., Uvah, J., & Amin, R. (2012). Predicting students’ performance in elements of statistics. Online Submission, 10, 875–884.
Liao, S. N., Zingaro, D., Thai, K., Alvarado, C., Griswold, W. G., & Porter, L. (2019). A robust machine learning technique to predict low-performing students. ACM Transactions on Computing education (TOCE), 19(3), 1–19.
Article
Google Scholar
Lykourentzou, I., Giannoukos, I., Mpardis, G., Nikolopoulos, V., & Loumos, V. (2009). Early and dynamic student achievement prediction in e-learning courses using neural networks. Journal of the American Society for Information Science and Technology, 60(2), 372–380.
Article
Google Scholar
Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for early prediction of at-risk students in a course using standards-based grading. Computers & Education, 103, 1–15.
Article
Google Scholar
Moonsamy, D., Naicker, N., Adeliyi, TT., & Ogunsakin, R. E. (2021). A meta-analysis of educational data mining for predicting students performance in programming. International Journal of Advanced Computer Science and Applications, 12(2), 97–104.
Mousavinasab, E., Zarifsanaiey, N., Niakan Kalhori, R. S., Rakhshan M., Keikha L., & Ghazi Saeedi M. (2021). Intelligent tutoring systems: a systematic review of characteristics, applications, and evaluation methods. Interactive Learning Environments, 29(1), 142–163.
Muñoz-Carpio, J. C., Jan, Z., & Saavedra, A. (2021). Machine learning for learning personalization to enhance student academic performance. In: LALA, pp 88–99.
Namoun, A., & Alshanqiti, A. (2021). Predicting student performance using data mining and learning analytics techniques: A systematic literature review. Applied Sciences, 11(1), 237.
Article
Google Scholar
Prenkaj, B., Velardi, P., Stilo, G., Distante, D., & Faralli, S. (2020). A survey of machine learning approaches for student dropout prediction in online courses. ACM Computing Surveys (CSUR), 53(3), 1–34.
Article
Google Scholar
Purwaningsih, N., & Arief, D. R. (2018). Predicting students’ performance in english class. In: AIP Conference Proceedings, AIP Publishing LLC, vol 1977, p 020020.
Qazdar, A., Er-Raha, B., Cherkaoui, C., & Mammass, D. (2019). A machine learning algorithm framework for predicting students performance: a case study of baccalaureate students in morocco. Education and Information Technologies, 24(6), 3577–3589.
Article
Google Scholar
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016).“why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144.
Romero, C., & Ventura, S. (2013). Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27.
Google Scholar
Romero, C., Espejo, P. G., Zafra, A., Romero, J. R., & Ventura, S. (2013). Web usage mining for predicting final marks of students that use moodle courses. Computer Applications in Engineering Education, 21(1), 135–146.
Article
Google Scholar
Sarker, F., Tiropanis, T., & Davis, HC. (2013). Students’ performance prediction by using institutional internal and external open data sources. eprintssotonacuk.
Shahiri, A. M., Husain, W., et al. (2015). A review on predicting student’s performance using data mining techniques. Procedia Computer Science, 72, 414–422.
Article
Google Scholar
Tomasevic, N., Gvozdenovic, N., & Vranes, S. (2020). An overview and comparison of supervised data mining techniques for student exam performance prediction. Computers & education, 143(103), 676.
Google Scholar
Urkude, S., & Gupta, K. (2019). Student intervention system using machine learning techniques. International Journal of Engineering and Advanced Technology, 8(6), 21–29.
Google Scholar
Wagner, E. P., Sasser, H., & DiBiase, W. J. (2002). Predicting students at risk in general chemistry using pre-semester assessments and demographic information. Journal of Chemical Education, 79(6), 749.
Article
Google Scholar
Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S., & Nawaz, R. (2020). Predicting academic performance of students from vle big data using deep learning models. Computers in Human behavior, 104(106), 189.
Google Scholar
Watson, C., Li, F. W., & Godwin, J. L. (2013). Predicting performance in an introductory programming course by logging and analyzing student programming behavior. In: 13 IEEE 13th international conference on advanced learning technologies, IEEE, pp 319–323.
Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013). Improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment. In: Proceedings of the third international conference on learning analytics and knowledge, pp 145–149.
Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final performance prediction model through interpretable genetic programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168–181.
Article
Google Scholar
Yadav, S. K., Bharadwaj, B., & Pal, S. (2012). Data mining applications: A comparative study for predicting student’s performance. arXiv preprint arXiv:1202.4815
Yukselturk, E., Ozekes, S., & Türel, Y. K. (2014). Predicting dropout student: An application of data mining methods in an online education program. European Journal of Open, Distance and e-learning, 17(1), 118–133.
Article
Google Scholar
Zhao, Q., Wang, J. L., Pao, T. L., & Wang, L. Y. (2020). Modified fuzzy rule-based classification system for early warning of student learning. Journal of Educational Technology Systems, 48(3), 385–406.
Article
Google Scholar