Amisha, P. M., Pathania, M., & Rathaur, V. K. (2019). Overview of artificial intelligence in medicine. Journal of Family Medicine and Primary Care, 8(7), 2328–2331.
Article
Google Scholar
Artiukhov, A. Y., Vasylieva, T. A., & Lieonov, S. V. (2021). An integrated method for evaluating the quality of education and university performance. Economy and Management, 3, 148–154. https://doi.org/10.33271/nvngu/2021-3/148
Article
Google Scholar
Baker, T., & Smith, L. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta Foundation. Retrieved July 5, 2021, from https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf
Balán, J. (2020). Expanding access and improving equity in higher education: The national systems perspective. In S. Schwartzman (Ed.), Higher education in Latin America and the challenges of the 21st century (pp. 59–75). Springer.
Chapter
Google Scholar
*Bedregal-Alpaca, N., Tupacyupanqui-Jaén, D., & Cornejo-Aparicio, V. (2020). Análisis del rendimiento académico de los estudiantes de Ingeniería de Sistemas, posibilidades de deserción y propuestas para su retención [Analysis of the academic performance of Systems Engineering students, dropout possibilities and proposals for their retention]. Ingeniare. Revista Chilena de Ingeniería, 28(4), 668–683. https://doi.org/10.4067/S0718-33052020000400668.
*Bojorque, R., & Pesántez-Avilés, F. (2020) Academic quality management system audit using artificial intelligence techniques. In T. Ahram (Ed.), Advances in artificial intelligence, software and systems engineering (AHFE 2019) (Vol. 965, pp. 275–283). Springer. https://doi.org/10.1007/978-3-030-20454-9_28.
Borsci, S., Malizia, A., Schmettow, M., Van Der Velde, F., Tariverdiyeva, G., Balaji, D., & Chamberlain, A. (2021). The Chatbot usability scale: The design and pilot of a usability scale for interaction with AI-based conversational agents. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-021-01582-9
Article
Google Scholar
Bridgstock, R., & Jackson, D. (2019). Strategic institutional approaches to graduate employability: Navigating meanings, measurements and what really matters. Journal of Higher Education Policy and Management, 41(5), 468–484.
Article
Google Scholar
Brooks, C., & Thompson, C. (2017). Predictive modelling in teaching and learning. In C. Lang, G. Siemens, A. Wise, & D. Gašević (Eds.), Handbook of learning analytics (pp. 61–68). Society for Learning Analytics Research.
Chapter
Google Scholar
Brunner, J. J., & Labraña, J. (2020). The transformation of higher education in Latin America: From elite access to massification and universalisation. In S. Schwartzman (Ed.), Higher education in Latin America and the challenges of the 21st century (pp. 31–41). Springer.
Chapter
Google Scholar
Castrillón, O. D., Sarache, W., & Ruiz-Herrera, S. (2020). Predicción del rendimiento académico por medio de técnicas de inteligencia artificial [Prediction of academic performance through artificial intelligence techniques]. Formación Universitaria, 13(1), 93–102.
Article
Google Scholar
Castro, D., Rodríguez-Gómez, D., & Gairín, J. (2017). Exclusion factors in Latin American higher education: A preliminary analyze from university governing board perspective. Education and Urban Society, 49(2), 229–247.
Article
Google Scholar
*Chacón-Sánchez, V. N., Casas-Mateus, D. E., & Alvarado Nieto, L. D. (2020). Behavior of employability indicators in university graduates. Ingenieria Solidaria, 16(2), 1–15. https://doi.org/10.16925/2357-6014.2020.02.03
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278.
Article
Google Scholar
Cheng, F., Zhang, H., Fan, W., & Harris, B. (2018). Image recognition technology based on deep learning. Wireless Personal Communications, 102(2), 1917–1933.
Article
Google Scholar
*Choque-Díaz, M., Armas-Aguirre, J., & Shiguihara-Juárez, P. (2018). Cognitive technology model to enhanced academic support services with chatbots. In Proceedings 2018 IEEE XXV international conference on electronics, electrical engineering and computing (INTERCON) (pp. 1–4). IEEE. https://doi.org/10.1109/INTERCON.2018.8526411.
Ciolacu, M., Tehrani, A. F., Binder, L., & Svasta, P. M. (2018, October). Education 4.0-artificial intelligence assisted higher education: Early recognition system with machine learning to support students' success. In Proceedings 2018 IEEE 24th international symposium for design and technology in electronic packaging (SIITME) (pp. 23–30). IEEE.
Conley, C. S., Shapiro, J. B., Kirsch, A. C., & Durlak, J. A. (2017). A meta-analysis of indicated mental health prevention programs for at-risk higher education students. Journal of Counseling Psychology, 64(2), 121–140.
Article
Google Scholar
*Contreras, L. E., Fuentes, H. J., & Rodríguez, J. I. (2020). Predicción del rendimiento académico como indicador de éxito/fracaso de los estudiantes de ingeniería, mediante aprendizaje automático [Predicting academic performance as an indicator of success/failure of engineering students, using machine learning]. Formación Universitaria, 13(5), 233–246. https://doi.org/10.4067/S0718-50062020000500233.
*Cordero, J., Toledo, A., Guamán, F., & Barba-Guamán, L. (2020). Use of chatbots for user service in higher education institutions. In Proceedings 2020 15th Iberian conference on information systems and technologies (CISTI) (pp. 1–6). IEEE. https://doi.org/10.23919/CISTI49556.2020.9141108.
*da Fonseca Silveira, R., Holanda, M., de Carvalho Victorino, M., & Ladeira, M. (2019). Educational data mining: Analysis of drop out of engineering majors at the UnB—Brazil. In Proceedings 2019 18th IEEE international conference on machine learning and applications (ICMLA) (pp. 259–262). IEEE. https://doi.org/10.1109/ICMLA.2019.00048.
Dagli, G., Altinay, F., Altinay, Z., & Altinay, M. (2020). Evaluation of higher education services: Social media learning. The International Journal of Information and Learning Technology, 38(1), 147–159.
Article
Google Scholar
*Delahoz-Dominguez, E. J., Guillen-Ibarra, S., & Fontalvo-Herrera, T. (2020). Análisis de la acreditación de calidad en programas de ingeniería industrial y los resultados en las pruebas nacionales estandarizadas, en Colombia [Analysis of quality accreditation in industrial engineering programs and results in national standardized tests, in Colombia]. Formación universitaria, 13(1), 127-134. https://doi.org/10.4067/S0718-50062020000100127.
de Peña, L. P., & Pérez, A. M. C. (2013). Review of some studies on university student dropout in Colombia and Latin America. Acta Universitaria, 23(4), 37–46.
Article
Google Scholar
*Dehon, P., Silva, A., Inocêncio, A. C., Castro, C., Costa, H., & Júnior, P. P. (2018, October). CVchatbot: Um chatbot para o aplicativo Facebook Lessenger integrado ao AVA Moodle [CVChatbot: A chatbot for the Facebook Messenger application integrated with LMS Moodle]. In Proceedings Brazilian symposium on computers in education (Simpósio Brasileiro de Informática na Educação-SBIE) (Vol. 29, No. 1, pp. 1623–1632). https://doi.org/10.5753/cbie.sbie.2018.1623
Dzhangarov, A. I., Suleymanova, M. A., & Zolkin, A. L. (2020, May). Face recognition methods. In IOP conference series: Materials science and engineering (Vol. 862, No. 042046). IOP Publishing. https://doi.org/10.1088/1757-899X/862/4/042046
Erkan, A. (2019). Impact of using technology on teacher-student communication/interaction: Improve students learning. World Journal of Education, 9(4), 30–40.
Article
Google Scholar
*Espinosa Rodríguez, R., Pérez de Celis Herrero, C., del CarmenLara Muñoz, M., Somodevilla García, M. J., & Pineda Torres, I. H. (2018). Chatbots en redes sociales para el apoyo oportuno de estudiantes universitarios con síntomas de trastorno por déficit de la atención con hiperactividad [Social media chatbots for timely support of college students with symptoms of attention deficit hyperactivity disorder]. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología, 22, 52–62. https://doi.org/10.24215/18509959.22.e06.
*Fiallos, A., Jimenes, K., Vaca, C., & Ochoa, X. (2017). Scientific communities detection and analysis in the bibliographic database: SCOPUS. In Proceedings 2017 fourth international conference on eDemocracy & eGovernment (ICEDEG) (pp. 118–124). IEEE. https://doi.org/10.1109/ICEDEG.2017.7962521.
Gade, K., Geyik, S., Kenthapadi, K., Mithal, V., & Taly, A. (2020, April). Explainable AI in industry: Practical challenges and lessons learned. In A. E. F. Seghrouchni, G. Sukthankar, & T.-Y. Liu (Eds.), Companion proceedings of the web conference 2020 (pp. 303–304). ACM.
*García-González, D. J., & Skrita, A. (2019). Predicting academic performance based on students’ family environment: Evidence for Colombia using classification trees. Psychology Society & Education, 11(3), 299–311. https://doi.org/10.21071/psye.v11i3.13947.
*García-Vélez, A. R., López-Nores, M., González-Fernández, G., Robles-Bykbaev, V. E., Wallace, M., Pazos-Arias, J. J., & Gil-Solla, A. (2019). On data protection regulations, big data and sledgehammers in higher education. Applied Sciences-Basel, 9(15), 3084. https://doi.org/10.3390/app9153084
Article
Google Scholar
Gómez, L. F., & Valdés, M. G. (2019). The evaluation of teacher performance in higher education. Journal of Educational Psychology-Propósitos y Representaciones, 7(2), 499–515. https://doi.org/10.20511/pyr2019.v7n2.255.
*Gómez Cravioto, D. A., Díaz Ramos, R. E., Zenkl Galaz, M. A., Hernández Gress, N., & Ceballos Cancino, H. G. (2020). Analysing factors that influence alumni graduate studies attainment with decision trees. In Proceedings 2020 international conference on computer science and software engineering (CSASE) (pp. 44–49). IEEE. https://doi.org/10.1109/CSASE48920.2020.9142069.
*Gutiérrez, G., Canul-Reich, J., Ochoa Zezzatti, A., Margain, L., & Ponce, J. (2018). Mining: Students comments about teacher performance assessment using machine learning algorithms. International Journal of Combinatorial Optimization Problems and Informatics, 9(3), 26–40. https://ijcopi.org/ojs/article/view/99
Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161, 134–146.
Article
Google Scholar
Khairil, L. F., & Mokshein, S. E. (2018). 21st century assessment: Online assessment. International Journal of Academic Research in Business and Social Sciences, 8(1), 659–672.
Article
Google Scholar
Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., & Linkman, S. (2009). Systematic literature reviews in software engineering—A systematic literature review. Information and Software Technology, 51(1), 7–15.
Article
Google Scholar
*Klos, M. C., Escoredo, M., Joerin, A., Lemos, V. N., Rauws, M., & Bunge, E. L. (2021). Artificial intelligence chatbot for anxiety and depression in university students: A pilot randomized controlled trial. JMIR Formative Research, 5(8), e20678. https://doi.org/10.2196/20678
Article
Google Scholar
Kumar, V. (2017). The role of university centers in promoting research. Journal of the Academy of Marketing Science, 45(4), 453–458.
Article
Google Scholar
Longo L. (2020). Empowering qualitative research methods in education with artificial intelligence. In A. Costa, L. Reis, & A. Moreira (Eds.), Computer supported qualitative research (Vol. 1068, pp. 1–21). Springer.
Lu, X. (2018). Natural language processing and intelligent computer-assisted language learning (ICALL). In J. I. Liontas (Ed.), The TESOL encyclopedia of English language teaching (pp. 1–6). Wiley Blackwell.
Google Scholar
Lu, X., Li, S., & Fujimoto, M. (2020). Automatic speech recognition. In Y. Kidawara, E. Sumita, & H. Kawai (Eds.), Speech-to-speech translation (pp. 21–38). Springer.
*Mendoza Jurado, H. F. (2020). Modelos de redes neuronales artificiales, como sustento evaluativo al crecimiento pedagógico virtual en Educación Superior [Artificial neural network models, as evaluative support to virtual pedagogical growth in Higher Education]. Educación Superior, 7(2), 25–36. https://www.scielo.org.bo/pdf/escepies/v7n2/v7n2_a06.pdf.
*Menezes, A. G., da C. Sá, J. M. D., Llapa, E., & Estombelo-Montesco, C. A. (2020). Automatic attendance management system based on deep one-shot learning. In Proceedings 2020 international conference on systems, signals and image processing (IWSSIP) (pp. 137–142). IEEE. https://doi.org/10.1109/IWSSIP48289.2020.9145230.
*Miranda, M. A., & Guzmán, J. (2017). Análisis de la deserción de estudiantes universitarios usando técnicas de minería de datos [Analysis of university student dropout using data mining techniques]. Formación Universitaria, 10(3), 61–68. https://doi.org/10.4067/S0718-50062017000300007.
*Nieto, Y., García-Díaz, V., Montenegro, C., González, C. C., & González Crespo, R. (2019). Usage of machine learning for strategic decision making at higher educational institutions. IEEE Access, 7, 75007–75017. https://doi.org/10.1109/ACCESS.2019.2919343.
*Okoye, K., Arrona-Palacios, A., Camacho-Zuñiga, C., Hammout, N., Nakamura, E. L., Escamilla, J., & Hosseini, S. (2020). Impact of students’ evaluation of teaching: A text analysis of the teachers qualities by gender. International Journal of Educational Technology in Higher Education, 17(1), 1–27. https://doi.org/10.1186/s41239-020-00224-z.
Owoc M. L., Sawicka A., & Weichbroth P. (2021). Artificial intelligence technologies in education: Benefits, challenges and strategies of implementation. In M. L Owoc, & M. Pondel (Eds.), Artificial intelligence for knowledge management (Vol. 599, pp. 37–58). Springer.
Padayachee, P., Wagner-Welsh, S., & Johannes, H. (2018). Online assessment in Moodle: A framework for supporting our students. South African Journal of Higher Education, 32(5), 211–235.
Article
Google Scholar
*Palacios, C. A., Reyes-Suárez, J. A., Bearzotti, L. A., Leiva, V., & Marchant, C. (2021). Knowledge discovery for higher education student retention based on data mining: Machine learning algorithms and case study in Chile. Entropy, 23(4), 485. https://doi.org/10.3390/e23040485
Article
Google Scholar
Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning. https://doi.org/10.1186/s41039-017-0062-8
Article
Google Scholar
Salas-Pilco, S. Z., & Yang, Y. (2020). Learning analytics initiatives in Latin America: Implications for educational researchers, practitioners and decision makers. British Journal of Educational Technology, 51(4), 875–891. https://doi.org/10.1111/bjet.12952
Article
Google Scholar
*Sandoval-Palis, I., Naranjo, D., Gilar-Corbi, R., & Pozo-Rico, T. (2020). Neural network model for predicting student failure in the academic leveling course of Escuela Politecnica Nacional. Frontiers in Psychology, 11, 515531. https://doi.org/10.3389/fpsyg.2020.515531.
Article
Google Scholar
*Santos, G. A. S., Belloze, K. T., Tarrataca, L., Haddad, D. B., Bordignon, A. L., & Brandao, D. N. (2020). EvolveDTree: Analyzing student dropout in universities. In Proceedings 2020 international conference on systems, signals and image processing (IWSSIP) (pp. 173–178). IEEE. https://doi.org/10.1109/IWSSIP48289.2020.9145203.
*Sayama, H. F., Araujo, A. V., & Fernandes, E. R. (2019). FaQuAD: Reading comprehension dataset in the domain of Brazilian higher education. In Proceedings 2019 8th Brazilian conference on intelligent systems (BRACIS) (pp. 443–448). IEEE. https://doi.org/10.1109/BRACIS.2019.00084.
Schwartzman, S. (Ed.) (2020). Higher education in Latin America and the challenges of the 21st century. Springer.
Siemens, G. (2019). Learning analytics and open, flexible, and distance learning. Distance Education, 40(3), 414–418.
Article
Google Scholar
Sun, Z., & Stranieri, A. (2021). The nature of intelligent analytics. In Z. Sun (Ed.), Intelligent analytics with advanced multi-industry applications (pp. 1–21). IGI Global.
Chapter
Google Scholar
*Tapia-Leon, M., Carrera Rivera, A., Chicaiza Espinosa, J., & Luján-Mora, S. (2017). Representation of Latin American university syllabuses in a semantic network. In Proceedings 2017 international conference on information systems and computer science (INCISCOS) (pp. 295–301). IEEE. https://doi.org/10.1109/INCISCOS.2017.28.
The World Bank. (2021b). Latin America and the Caribbean: Tertiary education. Context. http://pubdocs.worldbank.org/en/738931611934489480/LAC-TE-and-Covid-updated.pdf
The World Bank. (2021a). World Bank open data. Retrieved July 5, 2021, from https://data.worldbank.org/
Torre, D., & Zapata, G. (2012). Impacto de procesos de aseguramiento de la calidad sobre las instituciones de educación superior: un estudio en siete países [Impact of quality assurance processes on higher education institutions: A study in seven countries]. In M. Lemaitre, & M. Zenteno (Eds.), Aseguramiento de la Calidad en Iberoamérica. Informe 2012 (pp. 115–157). RIL Editores.
*Torres Soto, M. D., Torres Soto, A., Barajas Aranda, D. A., Campos Muñoz, N., Ponce de León Sentí, E. E., & Velazquez Amador, C. E. (2019). Suicidal tendency neural identifier in university students from Aguascalientes, Mexico. In M. A. Carreno León, J. A. Sandoval Bringas, M. Chacón Rivas, F. J. Álvarez Rodríguez, & A. Silva Sprock (Eds.), Proceedings 2019 XIV Latin American conference on learning technologies (LACLO) (pp. 387–392). IEEE. https://doi.org/10.1109/LACLO49268.2019.00071.
Twining, P., Heller, R. S., Nussbaum, M., & Tsai, C. C. (2017). Some guidance on conducting and reporting qualitative studies. Computers & Education, 106, A1–A9.
Article
Google Scholar
*Ulloa Cazarez, R. L., & López Martín, C. (2018). Neural networks for predicting student performance in online education. IEEE Latin America Transactions, 16(7), 2053–2060. https://doi.org/10.1109/TLA.2018.8447376.
*Villaseñor, A. E., Arencibia-Jorge, R., & Carrillo-Calvet, H. (2017). Multiparametric characterization of scientometric performance profiles assisted by neural networks: A study of Mexican higher education institutions. Scientometrics, 110(1), 77–104. https://doi.org/10.1007/s11192-016-2166-0.
*Visbal-Cadavid, D., Mendoza, A. M., & Hoyos, I. Q. (2019). Prediction of efficiency in colombian higher education institutions with data envelopment analysis and neural networks. Pesquisa Operacional, 39(2), 261–275. https://doi.org/10.1590/0101-7438.2019.039.02.0261.
Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review. Journal of Planning Education and Research, 39(1), 93–112.
Article
Google Scholar
Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial intelligence, 2, 100025.
Google Scholar