Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749 https://doi.org/10.1109/tkde.2005.99.
Google Scholar
Albatayneh, N. A., Ghauth, K. I., & Chua, F.-F. (2018). Utilizing learners’ negative ratings in semantic content-based recommender system for e-learning forum. Educational Technology & Society, 21(1), 112–125 https://doi.org/10.1007/978-3-319-07692-8_35.
Google Scholar
Bauman, K., & Tuzhilin, A. (2018). Recommending remedial learning materials to students by filling their knowledge gaps. MIS Quarterly, 42(1), 313–3A7 https://doi.org/10.25300/misq/2018/13770.
Google Scholar
Benhamdi, S., Babouri, A., & Chiky, R. (2017). Personalized recommender system for e-learning environment. Education and Information Technologies, 22(4), 1455–1477 https://doi.org/10.1007/s10639-016-9504-y.
Google Scholar
Bertrand, K., L’Espérance, N., & Flores-Aranda, J. (2014). La méthode de la revue systématique: illustration provenant du domaine de la toxicomanie et des troubles mentaux concomitants chez les jeunes. Méthodes qualitatives, quantitatives et mixtes dans la recherche en sciences humaines, sociales et de la santé, (pp. 145–163).
Blaschke, L. M. (2018). Self-determined learning (heutagogy) and digital media creating integrated educational environments for developing lifelong learning skills. In The digital turn in higher education, (pp. 129–140). Wiesbaden: Springer VS.
Google Scholar
Booker, Q. E. (2009). Automating “word of mouth” to recommend classes to students: An application of social information filtering algorithms. Journal of College Teaching & Learning, 6(3), 39–44 https://doi.org/10.19030/tlc.v6i3.1162.
Google Scholar
Brennan, K. (2012). Best of both worlds: Issues of structure and agency in computational creation, in and out of school (Ph.D. Thesis). Cambridge: Massachusetts Institute of Technology.
Google Scholar
Butler, D. L. (2005). L’autorégulation de l’apprentissage et la collaboration dans le développement professionnel des enseignants. Revue des Sciences de l’Éducation, 31(1), 55–78 https://doi.org/10.7202/012358ar.
Google Scholar
Cabada, R. Z., Estrada, M. L. B., Hernández, F. G., Bustillos, R. O., & Reyes-García, C. A. (2018). An affective and web 3.0-based learning environment for a programming language. Telematics and Informatics, 35(3), 611–628 https://doi.org/10.1016/j.tele.2017.03.005.
Google Scholar
Camacho, L. A. G., & Alves-Souza, S. N. (2018). Social network data to alleviate cold-start in recommender system: A systematic review. Information Processing & Management, 54(4), 529–544 https://doi.org/10.1016/j.ipm.2018.03.004.
Google Scholar
Carré, P. (2003). La double dimension de l’apprentissage autodirigé contribution à une théorie du sujet social apprenant. La Revue Canadienne pour l’étude de l’Éducation des Adultes, 17, 66–91.
Google Scholar
Carré, P., Jézégou, A., Kaplan, J., Cyrot, P., & Denoyel, N. (2011). “L’autoformation”. The state of research on self-directed learning in France. International Journal of Self-Directed Learning, 8(1), 7–17.
Google Scholar
Clow, D., Ferguson, R., Macfadyen, L., Prinsloo, P., & Slade, S. (2016). LAK failathon. In Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, (pp. 509–511).
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46 https://doi.org/10.1177/001316446002000104.
Google Scholar
Crespo, P. T., & Antunes, C. (2015). Predicting teamwork results from social network analysis. Expert Systems, 32(2), 312–325 https://doi.org/10.1111/exsy.12038.
Google Scholar
Dascalu, M.-I., Bodea, C.-N., Moldoveanu, A., Mohora, A., Lytras, M., & de Pablos, P. O. (2015). A recommender agent based on learning styles for better virtual collaborative learning experiences. Computers in Human Behavior, 45, 243–253 https://doi.org/10.1016/j.chb.2014.12.027.
Google Scholar
Deschênes, M., & Laferrière, T. (2019). Le codesign d’une plateforme numérique fondé sur des principes au service de l’agentivité des enseignantes et des enseignants en contexte de développement professionnel. Canadian Journal of Learning and Technology, 45(1), 1–20 https://doi.org/10.21432/cjlt27798.
Google Scholar
Design-Based Research Collective (2003). Design-based research: an emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8 https://doi.org/10.3102/0013189x032001005.
Google Scholar
Drachsler, H., Hummel, H., & Koper, R. (2008). Personal recommender systems for learners in lifelong learning: requirements, techniques and model. International Journal of Learning Technology, 3(4), 404–423 https://doi.org/10.1504/ijlt.2008.019376.
Google Scholar
Drachsler, H., Pecceu, D., Arts, T., Hutten, E., Rutledge, L., van Rosmalen, P., & Koper, R. (2010). ReMashed – an usability study of a recommender system for mash-ups for learning. International Journal of Emerging Technologies in Learning, S1, 7–11 https://doi.org/10.3991/ijet.v5s1.1191.
Google Scholar
Drachsler, H., Verbert, K., Santos, O. C., & Manouselis, N. (2015). Panorama of recommender systems to support learning. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook, (pp. 421–451). Boston: Springer https://doi.org/10.1007/978-1-4899-7637-6_12.
Google Scholar
Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2011). Collaborative filtering recommender systems. Foundations and Trends in Human-Computer Interaction, 4(2), 81–173 https://doi.org/10.1561/1100000009.
Google Scholar
Erdt, M., Fernandez, A., & Rensing, C. (2015). Evaluating recommender systems for technology enhanced learning: a quantitative survey. IEEE Transactions on Learning Technologies, 8(4), 326–344 https://doi.org/10.1109/tlt.2015.2438867.
Google Scholar
Fazeli, S., Drachsler, H., Bitter-Rijpkema, M., Brouns, F., van der Vegt, W., & Sloep, P. B. (2018). User-centric evaluation of recommender systems in social learning platforms: accuracy is just the tip of the iceberg. IEEE Transactions on Learning Technologies, 11(3), 294–306 https://doi.org/10.1109/tlt.2017.2732349.
Google Scholar
Ferreira-Satler, M., Romero, F., Menendez-Dominguez, V., Zapata, A., & Prieto, M. (2012). Fuzzy ontologies-based user profiles applied to enhance e-learning activities. Soft Computing – A Fusion of Foundations, Methodologies & Applications, 16(7), 1129–1141 https://doi.org/10.1007/s00500-011-0788-y.
Google Scholar
Fischer, F., Kollar, K., Stegmann, K., & Wecker, C. (2013). Toward a script theory of guidance in computer-supported collaborative learning. Educational Psychologist, 48(1), 56–66.
Google Scholar
Gasparic, M., & Janes, A. (2016). What recommendation systems for software engineering recommend: a systematic literature review. Journal of Systems and Software, 113, 101–113.
Google Scholar
Ghauth, K. I., & Abdullah, N. A. (2010). Measuring learner’s performance in e-learning recommender systems. Australasian Journal of Educational Technology, 26(6), 764–774 https://doi.org/10.14742/ajet.1041.
Google Scholar
Gough, D., Oliver, S., & Thomas, J. (2017). Introducing systematic reviews. In D. Gough, S. Oliver, & J. Thomas (Eds.), An introduction to systematic reviews, (2nd ed., pp. 1–18). London: Sage.
Google Scholar
Grant, M. J., & Booth, A. (2009). A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26(2), 91–108 https://doi.org/10.1111/j.1471-1842.2009.00848.x.
Google Scholar
Guangjie, L., Junmin, L., Meng, S., Yumin, L., & Chen, W. (2018). Topic-aware staff learning material generation in complaint management systems. International Journal of Innovation & Learning, 24(1), 93–103 https://doi.org/10.1504/ijil.2018.10009636.
Google Scholar
Gunawardana, A., & Shani, G. (2015). Evaluating recommender systems. In Recommender systems handbook, (pp. 265–308). Boston: Springer https://doi.org/10.1007/978-1-4899-7637-6_8.
Google Scholar
Gwet, K. L. (2014). Handbook of inter-rater reliability: the definitive guide to measuring the extent of agreement among raters. Gaithersburg: Advanced Analytics, LLC.
Google Scholar
Han, J., Jo, J., Ji, H., & Lim, H. (2016). A collaborative recommender system for learning courses considering the relevance of a learner’s learning skills. Cluster Computing, 19(4), 2273–2284 https://doi.org/10.1007/s10586-016-0670-x.
Google Scholar
Herlocker, J. L., Konstan, J. A., & Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM conference on Computer supported cooperative work, (pp. 241–250). ACM https://doi.org/10.1145/358916.358995.
Hsieh, T.-C., Wang, T.-I., Su, C.-Y., & Lee, M.-C. (2012). A fuzzy logic-based personalized learning system for supporting adaptive english learning. Journal of Educational Technology & Society, 15(1), 273–288.
Google Scholar
Jézégou, A. (2013). The influence of the openness of an E-learning situation on adult students’ self-regulation. The International Review of Research in Open and Distance Learning, 14(3), 182–201.
Google Scholar
Khribi, M. K., Jemni, M., & Nasraoui, O. (2009). Automatic recommendations for E-learning personalization based on web usage mining techniques and information retrieval. Part of a Special Issue: New Directions in Advanced Learning Technologies, 12(4), 30–42 https://doi.org/10.1109/icalt.2008.198.
Google Scholar
Klemenčič, M. (2017). From student engagement to student agency: conceptual considerations of European policies on student-centered learning in higher education. Higher Education Policy, 30(1), 69–85.
Google Scholar
Knijnenburg, B. P., Willemsen, M. C., & Kobsa, A. (2011). A pragmatic procedure to support the user-centric evaluation of recommender systems. In Proceedings of the fifth ACM conference on Recommender systems, (pp. 321–324) https://doi.org/10.1145/2043932.2043993.
Google Scholar
Knowles, M. S. (1975). Self-directed learning: a guide for learners and teachers. New York: Association Press.
Google Scholar
Konstan, J. A., & Riedl, J. (2012). Deconstructing recommender systems. IEEE Spectrum, 10, 1–7.
Google Scholar
Lau, S. B.-Y., Lee, C.-S., & Singh, Y. P. (2015). A folksonomy-based lightweight resource annotation metadata schema for personalized hypermedia learning resource delivery. Interactive Learning Environments, 23(1), 79–105 https://doi.org/10.1080/10494820.2012.745429.
Google Scholar
Mandeville, L. (2001). Apprendre par l’expérience : un modèle de formation continue. In D. Raymond (Ed.), Nouveaux espaces de développement professionnel et organisationnel, (pp. 151–164). Sherbrooke: Éditions du CRP.
Google Scholar
Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2011). Recommender systems in technology enhanced learning. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook, (pp. 387–415). Boston: Springer https://doi.org/10.1007/978-0-387-85820-3_12.
Google Scholar
Morales-del-Castillo, J. M., Peis, E., Moreno, J. M., & Herrera-Viedma, E. (2009). D-fussion: a semantic selective disssemination of information service for the research community in digital libraries. Information Research: An International Electronic Journal, 14(2).
Niemann, K., & Wolpers, M. (2015). Creating usage context-based object similarities to boost recommender systems in technology enhanced learning. IEEE Transactions on Learning Technologies, 8(3), 274–285 https://doi.org/10.1109/tlt.2014.2379261.
Google Scholar
Oduwobi, O., & Ojokoh, B. A. (2015). Providing personalized services to users in a recommender system. International Journal of Web-Based Learning and Teaching Technologies, 10(2), 26–48 https://doi.org/10.4018/ijwltt.2015040103.
Google Scholar
Rahayu, P., Sensuse, D. I., Purwandari, B., Budi, I., Khalid, F., & Zulkarnaim, N. (2017). A systematic review of recommender system for e-portfolio domain. In Proceedings of the 5th International Conference on Information and Education Technology, (pp. 21–26) https://doi.org/10.1145/3029387.3029420.
Google Scholar
Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: introduction and challenges. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender systems handbook, (pp. 1–34). Boston: Springer https://doi.org/10.1007/978-1-4899-7637-6_1.
MATH
Google Scholar
Rodríguez, P., Heras, S., Palanca, J., Poveda, J. M., Duque, N., & Julián, V. (2017). An educational recommender system based on argumentation theory. AI Communications, 30(1), 19–36 https://doi.org/10.3233/aic-170724.
MathSciNet
Google Scholar
Santos, O. C., & Boticario, J. G. (2015). User-centred design and educational data mining support during the recommendations elicitation process in social online learning environments. Expert Systems, 32(2), 293–311 https://doi.org/10.1111/exsy.12041.
Google Scholar
Scardamalia, M. (2000). Can schools enter a knowledge society? In M. Selinger, & J. Wynn (Eds.), Educational technology and the impact on teaching and learning, (pp. 6–10). Abingdon: Research Machines.
Google Scholar
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: theory, pedagogy, and technology. In K. Sawyer (Ed.), Cambridge handbook of the learning sciences, (pp. 97–118). New York: Cambridge University Press.
Google Scholar
Spinuzzi, C. (2005). The methodology of participatory design. Technical Communication, 52(2), 163–174 https://doi.org/10.1207/s15427625tcq0604_4.
Google Scholar
Straka, G. A. (1999). Perceived work conditions and self-directed learning in the process of work. International Journal of Training and Development, 3(4), 240–249.
Google Scholar
Tadlaoui, M., Sehaba, K., George, S., Chikh, A., & Bouamrane, K. (2018). Social recommender approach for technology-enhanced learning. International Journal of Learning Technology, 13(1), 61–89 https://doi.org/10.1504/ijlt.2018.091631.
Google Scholar
Tang, T. Y., & McCalla, G. (2009). A multidimensional paper recommender. IEEE Internet Computing, 13(4), 34–41 https://doi.org/10.1109/mic.2009.73.
Google Scholar
Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21–48 https://doi.org/10.1007/s10462-017-9539-5.
Google Scholar
Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I., & Duval, E. (2012). Context-aware recommender systems for learning: a survey and future challenges. IEEE Transactions on Learning Technologies, 5(4), 318–335.
Google Scholar
Vygotsky, L. S. (1978). Mind in society: the development of higher psychological processes. Cambridge: Harvard University Press.
Google Scholar
Wan, X., & Okamoto, T. (2011). Utilizing learning process to improve recommender system for group learning support. Neural Computing & Applications, 20(5), 611–621 https://doi.org/10.1007/s00521-009-0283-x.
Google Scholar
Wang, F.-H. (2008). Content recommendation based on education-contextualized browsing events for web-based personalized learning. Educational Technology & Society, 11(4), 94–112.
Google Scholar
Wang, P.-Y., & Yang, H.-C. (2012). Using collaborative filtering to support college students’ use of online forum for English learning. Computers & Education, 59(2), 628–637 https://doi.org/10.1016/j.compedu.2012.02.007.
Google Scholar
Whittaker, S., Terveen, L., & Nardi, B. A. (2000). Let’s stop pushing the envelope and start addressing it: a reference task agenda for HCI. Human Computer Interaction, 15(2–3), 75–106 https://doi.org/10.1207/s15327051hci1523_2.
Google Scholar
Winoto, P., Tang, T. Y., & McCalla, G. (2012). Contexts in a paper recommendation system with collaborative filtering. International Review of Research in Open and Distance Learning, 13(5), 56–75 https://doi.org/10.19173/irrodl.v13i5.1243.
Google Scholar
Zapata, A., Menéndez, V. H., Prieto, M. E., & Romero, C. (2013). A framework for recommendation in learning object repositories: an example of application in civil engineering. Advances in Engineering Software, 56, 1–14 https://doi.org/10.1016/j.advengsoft.2012.10.005.
Google Scholar
Zheng, X.-L., Chen, C.-C., Hung, J.-L., He, W., Hong, F.-X., & Lin, Z. (2015). A hybrid trust-based recommender system for online communities of practice. IEEE Transactions on Learning Technologies, 8(4), 345–356 https://doi.org/10.1109/tlt.2015.2419262.
Google Scholar