Aleven, V., Stahl, E., Schworm, S., Fischer, F., & Wallace, R. (2003). Help seeking and help design in interactive learning environments. Review of Educational Research, 73(3), 277–320.
Article
Google Scholar
Alexander, S., Sarrafzadeh, A., & Hill, S. (2006). Easy with Eve: a functional affective tutoring system, Paper presented at the workshop on motivational and affective issues in ITS. 8th international conference on ITS (pp. 5–12).
Google Scholar
AlZoubi, O., Calvo, R. A., & Stevens, R. H. (2009). Classification of EEG for affect recognition: an adaptive approach AI 2009: Advances in Artificial Intelligence, (pp. 52–61). Springer.
Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167–207.
Article
Google Scholar
Ashcraft, M. H., & Kirk, E. P. (2001). The relationships among working memory, math anxiety, and performance. Journal of Experimental Psychology: General, 130(2), 224. https://doi.org/10.1037/0096-3445.130.2.224.
Article
Google Scholar
Azevedo, R., Johnson, A., Chauncey, A., & Burkett, C. (2010). Self-regulated learning with MetaTutor: Advancing the science of learning with MetaCognitive tools New science of learning, (pp. 225–247). Springer.
Bixler, R., & D’Mello, S. (2013). Detecting boredom and engagement during writing with keystroke analysis, task appraisals, and stable traits. Paper presented at the 18th international conference on intelligent user interfaces (IUI’13).
Book
Google Scholar
Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, 13(6), 4–16.
Article
Google Scholar
Corbett, A. T., & Anderson, J. R. (2001). Locus of feedback control in computer-based tutoring: Impact on learning rate, achievement and attitudes. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
Book
Google Scholar
Coulson, M. (2004). Attributing emotion to static body postures: Recognition accuracy, confusions, and viewpoint dependence. Journal of Nonverbal Behavior, 28(2), 117–139.
Article
MathSciNet
Google Scholar
D’Mello, S., Jackson, T., Craig, S., Morgan, B., Chipman, P., White, H.,… Picard, R., (2008). AutoTutor detects and responds to learners affective and cognitive states. Paper presented at the Workshop on emotional and cognitive issues at the international conference on intelligent tutoring systems.
Google Scholar
D’Mello, S. K., & Graesser, A. (2010). Multimodal semi-automated affect detection from conversational cues, gross body language, and facial features. User Modelling and User-Adapted Interaction, 20(2), 147–187.
Article
Google Scholar
D’Mello, S. K., Lehman, B., & Graesser, A. (2011). A motivationally supportive affect-sensitive autotutor New perspectives on affect and learning technologies, (pp. 113–126). Springer.
Damasio, A. (1994). Descartes’ Error: Emotion, reason, and the human brain, (vol. 178). New York: Grosset/Putnam.
Google Scholar
Dolan, R. J., & Vuilleumier, P. (2003). Amygdala automaticity in emotional processing. Annals of the New York Academy of Sciences, 985(1), 348–355.
Article
Google Scholar
Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1(1), 3–14.
Article
Google Scholar
Goleman, D. (1995). Emotional intelligence: Why it can matter more than IQ. New York: Bantam Books.
Google Scholar
Grawemeyer, B., Mavrikis, M., Holmes, W., Hansen, A., Loibl, K., & Gutiérrez-Santos, S. (2015). The impact of feedback on students’ affective states. Paper presented at the CEUR Workshop Proceedings.
Google Scholar
Gray, J. R., Braver, T. S., & Raichle, M. E. (2002). Integration of emotion and cognition in the lateral prefrontal cortex. Proceedings of the National Academy of Sciences, 99(6), 4115–4120.
Article
Google Scholar
Greene, T. R., & Noice, H. (1988). Influence of positive affect upon creative thinking and problem solving in children. Psychological Reports, 63(3), 895–898. https://doi.org/10.2466/pr0.1988.63.3.895.
Article
Google Scholar
Hascher, T. (2010). Learning and emotion: Perspectives for theory and research. European Educational Research Journal, 9(1), 13–28.
Article
Google Scholar
Isen, A. M. (2000). Some perspectives on positive affect and self-regulation. Psychological Inquiry, 11(3), 184–187.
Google Scholar
Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. Paper presented at the Proceedings of the second international workshop on Computing education research.
Book
Google Scholar
Kapoor, A., Burleson, W., & Picard, R. W. (2007). Automatic prediction of frustration. International Journal of Human-Computer Studies, 65(8), 724–736.
Article
Google Scholar
Kapoor, A., & Picard, R. W. (2005). Multimodal affect recognition in learning environments. Paper presented at the proceedings of the 13th annual ACM international conference on multimedia.
Book
Google Scholar
Kort, B., Reilly, R., & Picard, R. W. (2001). An affective model of interplay between emotions and learning: Reengineering educational pedagogy-building a learning companion. Paper presented at the advanced learning technologies. IEEE International Conference on.
Lepper, M. R., Woolverton, M., Mumme, D. L., & Gurtner, J. (1993). Motivational techniques of expert human tutors: Lessons for the design of computer-based tutors. In Computers as cognitive tools, (vol. 1993, pp. 75–105).
Google Scholar
Linnenbrink, E. A. (2006). Emotion research in education: Theoretical and methodological perspectives on the integration of affect, motivation, and cognition. Educational Psychology Review, 18(4), 307–314.
Article
Google Scholar
Morgan, D. L. (1996). Focus groups as qualitative research, (vol. 16). Sage publications.
Mota, S., & Picard, R. W. (2003). Automated posture analysis for detecting learner’s interest level. Paper presented at the conference on computer vision and pattern recognition workshop (CVPRW’03).
Google Scholar
Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91–105.
Article
Google Scholar
Phelps, E. A. (2004). Human emotion and memory: Interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198–202.
Article
Google Scholar
Picard, R. W. (1997). Affective computing, (vol. 252). MIT press Cambridge.
Prendinger, H., Dohi, H., Wang, H., Mayer, S., & Ishizuka, M. (2004). Empathic embodied interfaces: Addressing users’ affective state Affective Dialogue Systems, (pp. 53–64). Springer.
Robison, J., McQuiggan, S., & Lester, J. (2009). Evaluating the consequences of affective feedback in intelligent tutoring systems, Paper presented at the affective computing and intelligent interaction and workshops, 2009. ACII 2009 (). 3rd International Conference on.
Rowe, J., Mott, B., McQuiggan, S., Robison, J., Lee, S., & Lester, J. (2009). Crystal island: A narrative-centered learning environment for eighth grade microbiology, Paper presented at the workshop on intelligent educational games at the 14th international conference on artificial intelligence in education (). Brighton, UK.
Sabourin, J. L., Rowe, J. P., Mott, B. W., & Lester, J. C. (2013). Considering alternate futures to classify off-task behavior as emotion self-regulation: A supervised learning approach. Journal of Educational Data Mining, 5(1), 9–38.
Google Scholar
Santos, O. C. (2016). Emotions and personality in adaptive e-learning systems: an affective computing perspective Emotions and Personality in Personalized Services, (pp. 263–285). Springer.
Santos, O. C., Saneiro, M., Salmeron-Majadas, S., & Boticario, J. G. (2014). A methodological approach to eliciting affective educational recommendations. Paper presented at the advanced learning technologies (ICALT), 2014 IEEE 14th International Conference on.
Book
Google Scholar
Shaikh, M. A. M., Prendinger, H., & Ishizuka, M. (2008). Sentiment assessment of text by analyzing linguistic features and contextual valence assignment. Applied Artificial Intelligence, 22(6), 558–601.
Article
Google Scholar
Shute, V. J. (1991). Who is likely to acquire programming skills? Journal of Educational Computing Research, 7(1), 1–24.
Article
Google Scholar
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285.
Article
Google Scholar
Teeters, A., El Kaliouby, R., & Picard, R. (2006). Self-Cam: feedback from what would be your social partner. Paper presented at the ACM SIGGRAPH 2006 research posters.
Book
Google Scholar
Thompson, N., & McGill, T. J. (2012). Affective tutoring systems: Enhancing e-learning with the emotional awareness of a human tutor. International Journal of Information and Communication Technology Education, 8(4), 75–89.
Article
Google Scholar
VanLehn, K., Burleson, W., Girard, S., Chavez-Echeagaray, M. E., Gonzalez-Sanchez, J., Hidalgo-Pontet, Y., & Zhang, L. (2014). The affective meta-tutoring project: Lessons learned. Paper presented at the International Conference on Intelligent Tutoring Systems.
Google Scholar
Vuilleumier, P. (2005). How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences, 9(12), 585–594.
Article
Google Scholar
Weiner, B. (1972). Attribution theory, achievement motivation, and the educational process. Review of Educational Research, 42(2), 203–215.
Article
Google Scholar
Weiten, W., Dunn, D., & Hammer, E. (2011). Psychology applied to modern life: Adjustment in the 21st century, (10th ed., ). Cengage Learning.
Wood, H., & Wood, D. (1999). Help seeking, learning and contingent tutoring. Computers & Education, 33(2), 153–169.
Article
Google Scholar
Yeasin, M., Bullot, B., & Sharma, R. (2006). Recognition of facial expressions and measurement of levels of interest from video. IEEE Transactions on Multimedia, 8(3), 500–508.
Article
Google Scholar