Compared to the fast-growing body of scholarship concerned with educational mobile apps for children (Hirsh-Pasek et al., 2015; Hswen, Murti, Vormawor, Bhattacharjee, & Naslund, 2013; Judge, Floyd, & Jeffs, 2015), more evidence-based research into the impact of HE mobile learning apps is urgently needed. Where a mobile learning app’s effectiveness is concerned, some factors remain constant regardless of a student’s age: such as, learning is most effective when learners are engaged, cognitively active and guided by a goal, and when learning activities are scaffolded and interactive (Hirsh-Pasek et al., 2015). For older learners, however, a set of additional factors may influence their learning patterns and behaviours, such as their motivations, expectations and prior experiences (Salmon, Pechenkina, Chase, & Ross, 2016). All these factors need to be taken into account when designing mobile apps to enhance HE learner experience.
A number of mechanisms were found effective in the task of keeping learners engaged. Question-prompting and automated immediate feedback combined with explanatory strategies (Byun, Lee, & Cerreto, 2014; Sung, Chang, & Liu, 2016) were among them. The ‘push notification’ technology was also deemed useful when tasked with encouraging immediate learning and helping learners stay up-to-date with content (Garbrick & Clariana, 2015; Kudo et al., 2015). A mobile learning intervention’s length is another significant factor attributed to the intervention’s effectiveness, with longer interventions found more effective as they allowed to fully integrate students into the learning process, with the desired effects achieved over time (Sung et al., 2016). While learners’ age did not appear to factor into a mobile app intervention’s success, groups of learners homogenous in age showed higher rates of impact compared to the mixed-age cohorts (Sung et al., 2016). At the same time, mobile learning apps with gamified elements did not appear to achieve significant positive effects on learning (Sung et al., 2016). However, other studies found that when mindfully integrated into an intervention’s design, the game elements worked in accord with other aspects of the intervention to positively impact on student learning (Laine, Nygren, Dirin, & Suk, 2016; Woo, 2014).
Several educational psychology principles attributed to effective learning must also be considered when designing mobile learning app interventions. Based on Ebbinghaus’s (2013) theorising of ‘the forgetting curve’ as a way to explain the finer workings of human cognition and memory, the spacing effect and the testing effect emerged as two pedagogical principles significant when designing mobile apps for learning. With some positive results recoded (Kerfoot, Turchin, Breydo, Gagnon, & Conlin, 2014; Shenoi et al., 2016), when operationalised within an app’s design, these principles could allow students to revisit and consolidate what was learnt by being systematically tested on their knowledge.
The spacing and testing effects and the pedagogy of spaced education (Kelley & Whatson, 2013) behind them are well aligned with a knowledge organisation principle known as ‘chunking’. In the HE context, ‘chunking’ is best understood as a cognitive strategy used to enhance mental performance, where a bulk of information is (re)organised into smaller segments (‘chunks’) for improved comprehension (Afflerbach, Pearson, & Paris, 2008; Cowan, 2014). Enabled by smartphones and similar devices, mobile app technology is well suited to facilitate student engagement with such ‘chunk-sized’ knowledge, leading to better comprehension of lecture material (Lah, Saat, & Hassan, 2014).
Considering student demand for personalised learning options is growing (Shah, Sid Nair, & Bennett, 2013; Wanner & Palmer, 2015) while personal mobile devices become ubiquitous (Mackay, 2014), it is timely to take advantage of mobile app technologies to create new ways for students to personalise their educational experiences. These considerations are particularly salient where the experiences of first-year HE students are concerned as these students are at higher risk of dropping-out compared to their senior peers (O'Keeffe, 2013; Ryan, 2004).
Applying game principles in mobile app design
Gamification in education can be broadly understood as the use of game elements in non-game contexts (Deterding, 2011; Domínguez et al., 2013), purposed with increasing student engagement and motivation. With various studies reporting significant correlations between introducing the gamified elements into the learning process and increased student motivations (Domínguez et al., 2013), some gamification scholars (Hamari et al., 2014; Koivisto & Hamari, 2014) point out that success of any gamification initiative is greatly dependent on the context of its implementation and the attitudes of its intended users. Other recent research found that students generally hold positive perceptions of gamified learning and appreciate social interaction, engagement and immediate feedback it affords (Cheong, Filippou, & Cheong, 2014). Taking all these success factors into account, when strategically embedded into an online learning initiative, game elements have a potential to improve student outcomes (Hirsh-Pasek et al., 2015; Jere-Folotiya et al., 2014; Ke, 2015; Laine et al., 2016; Werbach & Hunter, 2015).
Learner motivation remains a primary concern of game-based mobile learning initiatives, with developers and educators alike trialling different approaches of introducing game elements into the learning process. These include ‘progression trees’, score-generated leaderboards, and digital badges (Abramovich, Schunn, & Higashi, 2013; Ahn, Pellicone, & Butler, 2014; Lokuge Dona, Gregory, & Pechenkina, 2016). Further, considering that low-stakes assessments offered early on in the teaching period build confidence and engagement, and, in turn, have a beneficial effect on retention (Meer & Chapman, 2014), delivered in a gamified format such assessments can make a mobile learning app more effective in its task (Weitze & Söbke, 2016).
Drawing on various examples of impactful mobile learning gamification initiatives, the app at the centre of this study was fitted with such features as push notifications, leaderboards and digital badges, while the pedagogy of spaced education operationalised through multiple-choice quizzes strategically scheduled post-lectures and pre-tutorials was used to boost student engagement.