Skip to main content

M-learning patterns in the virtual classroom

Patrones de m-learning en el aula virtual

Abstract

Mobile devices are everywhere to be found on university campuses. This has changed the nature of higher education and led to a new mobile form of e-learning known as m-learning. The aim of this article is to assess the penetration of mobile devices for learning purposes in higher education and to identify the main usage patterns. To that end, the study used two complementary methodologies: web usage mining and a questionnaire survey. Web usage mining was performed to collect data from the university’s learning management system (LMS) in order to explore this new technology’s usage trends in the past four academic years and to identify the main patterns of behaviour. A questionnaire survey of 460 university students was conducted to find out about the student-declared level of m-learning penetration. The results are conclusive: 25% of accesses to the LMS were made from mobile devices and 75% of the students used these devices for learning purposes. The findings of this study have significant implications not only for researchers and lecturers, but also for institutions intending to implement this teaching/learning methodology.

Resumen

Los dispositivos móviles se han vuelto omnipresentes en los campus universitarios, lo que ha cambiado la naturaleza de la educación superior y ha proporcionado una nueva forma de aprendizaje electrónico móvil (m-learning). El objetivo de este trabajo es evaluar la penetración que tienen los dispositivos móviles para el aprendizaje en la educación superior e identificar los principales patrones de uso. El estudio utiliza de forma complementaria dos metodologías. En primer lugar se realiza un ejercicio de minería web en la plataforma virtual de la universidad, a través del cual se exploran las tendencias del uso de esta nueva tecnología en los últimos cuatro cursos académicos y se identifican los principales patrones de comportamiento. En segundo lugar se lleva a cabo una encuesta a 460 estudiantes universitarios para conocer el nivel de penetración del m-learning declarado por los estudiantes. Los resultados son concluyentes, el 25% de las entradas al sistema LMS (Learning Maganament Systems) se realizan con dispositivo móvil y el 75% de los estudiantes utilizan estos dispositivos con fines de aprendizaje. Las implicaciones de este estudio son importantes tanto para investigadores y profesores como para las instituciones que pretendan implantar esta metodología de estudio.

References

  1. Arjona, J. E., & Sánchez, V. (2013). Revisión de opciones para el uso de la plataforma Moodle en dispositivos móviles [Review of Different Options to Access Moodle Platform Using Mobile Devices]. RED. Revista de Educación a Distancia, 37, 1–15.

    Google Scholar 

  2. Blackboard (n. d.). Retrieved from http://www.blackboard.com

  3. Casany, M. J., Alier, M., Mayol, E., Galanis, N., & Piguillem, J. (2012). Analyzing Moodle/LMS Logs to Measure Mobile Access. In Universidad Politécnica de Cataluña. UBICOMM 2012, The Sixth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (pp. 35–40).

  4. Castro, F., Vellido, A., Nebot, A., & Mugica, F. (2007). Applying datamining techniques to e-learning problems. In L. C. Jain, T. Raymond & D. Tedman (Eds.). Studies in Computational Intelligence Series: Vol. 62. Evolution of Teaching and Learning Paradigms in Intelligent Environment (pp. 183–221). Berlin, Germany: Springer-Verlag.

    Google Scholar 

  5. HESTELO (2013). Encuesta de Hábitos de Estudio y Movilidad 2012 [2012 Survey of Mobility and Study Habits]. Cátedra Movilidad y Educación. Universidad de Valladolid. Retrieved from http://ctme.uva.es/wp-content/uploads/2013/05/encuestahestelo.pdf

  6. Hung, J. L., & Zhang, K. (2012). Examining mobile learning trends 2003–2008: A categorical meta-trend analysis using text mining techniques. Journal of Computing in Higher Education, 24, 1–17. doi http://dx.doi.org/10.1007/s12528-011-9044-9

    Article  Google Scholar 

  7. Hwang, G. J., & Tsai, C. C. (2011). Research trends in mobile and ubiquitous learning: A review of publications in selected journals from 2001 to 2010. British Journal of Educational Technology, 42, E65–E70. doi http://dx.doi.org/10.1111/j.1467-8535.2011.01183.x

    Article  Google Scholar 

  8. Martín, S., Díaz, G., Plaza, I., Ruiz, E., Castro, M., & Peire, J. (2011). State of the art of frameworks and middleware for facilitating mobile and ubiquitous learning development. Journal of Systems and Software, 84, 1883–1891. doi http://dx.doi.org/10.1016/jjss.2011.06.042

    Article  Google Scholar 

  9. Mobilla, M. D. C. M. (2011). Experiencias de inclusión educativa en Colombia: hacia el conocimiento útil [Experiences of Educational Inclusion in Colombia: Towards Useful Knowledge]. RUSC. Universities and Knowledge Society Journal, 8(1), 43–54. Retrieved from http://www.uoc.edu/ojs/index.php/rusc/article/view/v8n1-martinez/v8n1-martinez

    Article  Google Scholar 

  10. Mödritscher, F., Neumann, G., & Brauer, C. (2012). Comparing LMS Usage Behavior of Mobile and Web Users. 2012 IEEE 12th International Conference on Advanced Learning Technologies (ICALT), 650–651. doi http://dx.doi.org/10.1109/ICALT.2012.42

  11. Moodle (n. d.). Retrieved from http://moodle.org

  12. Pachler, N., Ranieri, M., Manca, S., & Cook, J. (2012). Editorial: Social Networking and Mobile Learning. British Journal of Educational Technology, 43, 707–710. doi http://dx.doi.org/10.1111/j.1467-8535.2012.01365.x

    Article  Google Scholar 

  13. Pahl, C. (2004). Data mining technology for the evaluation of learning content interaction. International Journal of e-Learning, 3, 47–55.

    Google Scholar 

  14. Park, S. Y., Nam, M. W., & Cha, S. B. (2012). University students’ behavioral intention to use mobile learning: Evaluating the technology acceptance model. British Journal of Educational Technology, 43(4), 592–605. doi http://dx.doi.org/10.1111/j.1467-8535.2011.01229.x

    Article  Google Scholar 

  15. Prendes, M. P. (2009). Plataformas de campus virtual de software libre: Análisis comparativo de la situación actual en las universidades españolas. Informe del Proyecto EA-2008-0257 de la Secretaría de estado de Universidades e Investigación [Open source learning management systems: A comparative analysis of the current situation in Spanish universities. Report of Project EA-2008-0257 of the Office of the Secretary of State for Universities and Research, Spain]. Retrieved from http://www.um.es/campusvirtuales/informe.html

  16. Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33, 135–146. doi http://dx.doi.org/10.1016/j.eswa.2006.04.005

    Article  Google Scholar 

  17. Rushby, N. (2012). Editorial: An agenda for mobile learning. British Journal of Educational Technology, 43, 355–356. doi http://dx.doi.org/10.1111/j.1467-8535.2012.01313.x

    Article  Google Scholar 

  18. Sakai, Mobile Sakai Project (n. d.). Retrieved from https://confluence.sakaiproject.org/display/MOBILE/Home

  19. SCOPEO. m-learning en España, Portugal y América Latina. Noviembre de 2011. Retrieved from http://scopeo.usal.es/wp-content/uploads/2013/04/scopeom003.pdf

  20. Wu, W. H., Jim Wu, Y. C., Chen, C. Y., Kao, H. Y., Lin, C. H., & Huang, S. H. (2012). Review of trends from mobile learning studies: A meta-analysis. Computers & Education, 59, 817–827. doi http://dx.doi.org/10.1016/j.compedu.2012.03.016

    Article  Google Scholar 

  21. Zorrilla, M. E., Menasalvas, E., Marin, D., Mora, E., & Segovia, J. (2005). Web usage mining project for improving web-based learning sites. In Moreno-Díaz, Roberto; Pichler, Franz; Quesada-Arencibia, Alexis (Eds.), Lecture Notes in Computer Science, Vol. 3643. Computer Aided Systems Theory-EUROCAST 2005 (pp. 205–210). doi http://dx.doi.org/10.1007/11556985_26

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando A. López Hernández.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

López Hernández, F.A., Silva Pérez, M.M. M-learning patterns in the virtual classroom. Int J Educ Technol High Educ 11, 208–221 (2014). https://doi.org/10.7238/rusc.v11i1.1902

Download citation

Keywords

  • m-learning
  • mobile devices
  • web usage mining
  • Moodle
  • learning management systems

Palabras clave

  • m-learning
  • dispositivos móviles
  • minería web
  • Moodle
  • Learning Maganament Systems
\