
Exploring the relationship 
between computational thinking and learning 
satisfaction for non‑STEM college students
Chien Hsiang Liao1, Chang‑Tang Chiang2*  , I‑Chuan Chen2 and Kevin R. Parker3 

Abstract 

While various studies have focused on the significance of computational thinking (CT) 
for the future career paths of individuals in science, technology, engineering, and math‑
ematics (STEM), few studies have focused on computational thinking for non-STEM 
college students. This study explores the relationship between computational thinking 
and learning satisfaction for non-STEM-major college students. A conceptual model is 
proposed to examine the structural relationships among computational thinking, self-
efficacy, self-exploration, enjoyment and learning satisfaction in an AppInventor-based 
liberal education course. Collecting data from 190 undergraduate students from Tai‑
wan and analyzing the data by using partial least squares (PLS) methods, the research 
framework confirms the six proposed hypotheses. These results show that both 
computational thinking and enjoyment play significant roles in both self-exploration 
and digital self-efficacy. Moreover, digital self-efficacy and self-exploration also have a 
significant positive influence on learning satisfaction. These findings have implications 
for influencing the learning outcomes of non-STEM-major college students, computa‑
tional thinking course instructors, and computational thinking relevant policies.
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•	 This study develops a model for computational thinking and learning satisfaction.
•	 Computational thinking positively influences on digital self-efficacy and self-explo-

ration.
•	 Enjoyment positively influences on digital self-efficacy and self-exploration.
•	 Digital self-efficacy and self-exploration positively influence on learning satisfaction.
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Introduction
Computational thinking is regarded as a thinking process that enables the understand-
ing of problems and the formulation of creative solutions to these problems through the 
iteration of abstraction and algorithmic thinking (Chen et  al., 2017a, 2017b; Romero 
et al., 2017). Computational thinking has been defined as “solving problems, designing 
systems, and understanding human behavior, by drawing on the concepts fundamental 
to computer science” (Wing, 2006, p. 33). Computational thinking, an essential part of 
science, technology, engineering, and mathematics (STEM) education, addresses the 
essential concepts of STEM and involves the integration of multiple disciplines and 
cross-domain knowledge during the problem-solving process (Lu et al., 2021). That is, by 
drawing on principles and practices central to computer science, computational think-
ing is a capacity and skill set that individuals should possess and acquire at a basic level 
to solve ambiguous, complex and open-ended problems for the future world in various 
contexts (ISTE, 2022). It is therefore considered one of the essential twenty-first century 
skill that not only STEM workers but also everyone from different disciplines should 
learn (Güven & Gulbahar, 2020; Tekdal, 2021).

Computational thinking has been a trending topic in recent decades in learning 
research and educational practice. Scholars argue that children as young as 4 to 6 years 
old can build and program robots and learn computational thinking skills (Bers et al., 
2014). Previous studies have also suggested that learning computer science and STEM 
in early childhood assists students in developing certain competences and thinking 
archetypes, and the early experiences of children are likely to allow them to substan-
tially develop positive attitudes toward perseverance in future career development 
(Chen et  al., 2017a, 2017b; Israel et  al., 2015). However, the majority of these studies 
have focused on the STEM field with no mention of computational thinking. Accord-
ing to a computational thinking review article from Hsu and her colleagues, the existing 
computational thinking studies are largely aimed at biology, program coding, computer 
science, and robot design classes in terms of the subject and at K12 students in terms 
of age (Hsu et al., 2018; Tikva & Tambouris, 2021). Computational thinking should not 
be a privilege of STEM-related majors, but rather it is imperative to learn for students 
in other domains to learn to solve problems relevant to all disciplines (Czerkawski & 
Lyman, 2015; Wing, 2008). How to foster the learning performance of computational 
thinking for non-STEM college students remains unknown.

A very recent bibliometric analysis of computational thinking education research 
identified and selected 321 articles published from 2008 to 2020 in 36 journals in which 
the authors included the term computational thinking to investigate (Tekdal, 2021). The 
review indicates that the current computational thinking studies are largely conducted 
with students from elementary education to high school and focuses on the integration 
of computational thinking into STEM education. The author also recommended that 
future studies be expanded to cover higher education.

In a similar vein, Czerkawski and Lyman (2015) called for applying computational 
thinking methods to address some of the most challenging problems facing society. The 
purpose of social studies is to promote civic competence to confront large and com-
plex problems and to provide information about diverse disciplines such as geography, 
history, law, and civics (Güven & Gulbahar, 2020). College students studying social 
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studies can use the core concepts of computational thinking—abstraction and algorith-
mic thinking—to reason about and solve complex problems, design systems, and under-
stand human behaviors (Kules, 2016). Other than these few conceptual studies that tout 
the application of computational thinking to social studies, there is limited empirical 
research relating this topic to college students in non-STEM disciplines. The gap in this 
area explicitly indicates that there is a need for critical research on the learning effective-
ness of computational thinking in non-STEM disciplines among college students.

The study, consequently, addresses this gap in the educational literature and aims to 
examine how the learning effectiveness of computational thinking can be enhanced. 
Specifically, the purpose of this study is to investigate the structural relationships 
among computational thinking, self-efficacy, self-exploration, enjoyment, and learning 
satisfaction in an AppInventor-based liberal education class for non-STEM-major col-
lege students. The results contribute significant information for non-STEM-major col-
lege students that can help to improve their critical thinking skills while encouraging 
a more innovative and forward-thinking mindset to discover computational solutions 
(Chong et al., 2018; Kules, 2016). Moreover, the findings also aid computational thinking 
instructors in designing more accommodating computational thinking courses to reduce 
the digital divide that results from socioeconomic and cultural backgrounds (Czerkawski 
& Lyman, 2015).

Conceptual framework and hypothesis development
Computational thinking

The definitions of computational thinking vary by scholar. Wing (2006) introduced the 
concept of computational thinking and characterized it as a recursive process that uses 
the skill of abstraction and decomposition to confront a large complex task or design a 
large complex system. Israel et. al. (2015, p. 246) developed the definition and charac-
terized computational thinking as “students using computers to model their ideas and 
develop programs that enhance those programs.” Barr and Stephenson (2011, p. 115) 
explained the concept of computational thinking in the K-12 context as “an approach to 
solving problems in a way that can be implemented with a computer.”

Although the definitions of computational thinking vary and a consensus is lacking, 
the various accounts have several implications. It can be accepted that fostering com-
putational thinking-relevant skills can enhance problem solving and abstract reasoning 
capability. Computational thinking is a type of analytical thinking for problem solving 
that comprises the scoping of problems with a suitable expressive format or media, 
interpreting these topics through abstraction, and finally formulating computerized 
solutions to the problems (Gong et al., 2020). In addition, some computational thinking 
involves learning the competencies and know-how required to engage in programming 
skills. Finally, computational thinking essentially encompasses the concepts of abstrac-
tion, problem solving, analysis, decomposition, integration, algorithmic thinking, gener-
alization, coding, and debugging (Yılmaz et al., 2018).

Enjoyment

Enjoyment is defined as a positive affective reaction that mirrors general feelings such 
as liking, delight, and fun derived from an activity in which an individual is engaged 
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(Raedeke, 2007). Applying this notion to the learning field, enjoyment can be described 
as the extent to which a learner gains a sense of pleasure, joy, and fun and as a factor that 
contributes to a positive, all-inclusive experiences from a class (Moorthy et  al., 2019). 
Enjoyment is an intrinsic motivation with an innate tendency to discover novelty and is 
experienced when an individual faces challenges in expanding and exercising his or her 
abilities to learn and explore (Gomez et al., 2010; Teo & Noyes, 2011). A previous study 
has shown that learners’ motivations are positively related to learning performance 
(Gomez et al., 2010). Students experience psychological pleasure in game-based classes. 
That is, game-oriented teaching can promote learners’ motivations and interests, and 
learners enjoy these learning activities (Hsu et al., 2018).

Digital self‑efficacy

Rooted in social cognitive theory, self-efficacy refers to beliefs about one’s capabilities 
to learn or perform behaviors at designated levels (Bandura, 2006, 2010). The concept 
postulates that an individual’s achievement relies on interactions among one’s behaviors, 
personal factors (e.g., thoughts, beliefs), and environmental conditions (Bandura, 2006; 
Bandura & Schunk, 1981). Self-efficacy accounts for individual accomplishments and 
human well-being. Specifically, individuals with a higher sense of self-efficacy believe 
that they possess greater capabilities to accomplish challenging and difficult tasks. In a 
digital learning environment, digital self-efficacy, also called computer efficacy or inter-
net efficacy, is usually used to measure individual self-efficacy in the digital domain 
(Mun & Hwang, 2003; Wei et al., 2020). Venkatesh and Davis defined digital self-efficacy 
as a self-assessment of one’s ability to use information technology (IT) or one’s belief 
that people can use computer or internet-related technologies well (Venkatesh & Davis, 
1996). Based on this definition, this study modifies the definition to fit the research set-
ting and defines digital self-efficacy as the learner’s assessment of his or her ability to 
learn in an IT-mediated environment or his or her belief that he or she can use internet-
related technologies to learn.

The relationship between computational thinking and digital self‑efficacy

Expectancy-value theory posits that individuals’ expectations for success and the value 
of them succeeding are important factors in their motivation to accomplish various tasks 
(Eccles, 1983). That is, if a learner accepts that a class that he or she takes contributes 
to his or her capabilities or future career development, then the perceived value will 
increase and motivate the learner to engage more fully in the class. Applying this ration-
ale to a computational thinking class, a student’s motivation to learn may be aroused if 
the student can learn analytical skills, problem-solving skills, and thinking skills and thus 
improve his or her capabilities. Therefore, this study proposes the following hypothesis:

H1  Computational thinking has a positive influence on digital self-efficacy.

The relationship between enjoyment and digital self‑efficacy

Enjoyment is an intrinsic and affective motivation that can result in behavior changes 
and active learning (Goh & Yang, 2021). Self-efficacy reflects one’s internal motivation 
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based on ability, while emotional arousal is a critical source of the development of self-
efficacy (Bandura, 2006, 2010). When an individual faces threatening situations or dif-
ficult tasks, negative emotions, such as anxiety, may emerge and thus restrain one’s 
capabilities to cope. In contrast, when an individual perceives the tasks to be interesting 
or joyful, he or she might have more confidence in his or her ability to accomplish these 
tasks. A substantial body of evidence has shown positive associations between aspects 
of enjoyment and self-efficacy. For example, Chen et. al. (2017a, 2017b) found that 
enjoyment is an antecedent of self-efficacy in a physical activity environment. Mun and 
Hwang (2003) also concluded that learners with higher perceived levels of enjoyment 
exhibit higher digital self-efficacy when using web-based information systems. Based on 
such findings, this study proposes the following hypothesis:

H2  Enjoyment has a positive influence on digital self-efficacy.

Self‑exploration

Self-exploration is an individual’s conscious internal or external behavior of analyz-
ing information and pursuing knowledge related to his or her career (Flum & Kaplan, 
2006). Furthermore, information analysis results in the formation of self-meaning and 
has a systemic influence on fostering self-development. Educational psychologists argue 
that self-exploration is one of the core factors that explains identity formation because 
it assists individuals in examining their identifications by facing them in terms of their 
underexamined viewpoints, advancing beliefs about alternatives, and directing them to 
explore novel and unfamiliar knowledge areas (Kaplan & Madjar, 2017). Self-exploration 
is integral to career development and vocational choices (Flum & Kaplan, 2006).

The relationship between computational thinking and self‑exploration

One goal of education is to cultivate in students the competencies and capabilities to lev-
erage current technologies to solve undiscovered problems (Durak & Saritepeci, 2018). 
The International Society for Technology in Education (ISTE, 2022) also emphasizes 
that the purpose of computational thinking is to educate young students as computa-
tional thinkers who can solve tomorrow’s problems by using today’s technologies. Com-
putational thinking is essentially a set of transferable skills that enable people to foster 
technological literacy for the twenty-first century and to succeed in a wider range of jobs 
and tasks beyond their own disciplines (Nägele & Stalder, 2017). Since computational 
thinking is cross-disciplinary, a non-STEM college student who takes a computational 
thinking class might think about how these skills can be used in his or her major domain 
and explore the feasibility of applying these skills to his or her future career. When a 
class is more highly valued, the possibility is higher that the student seeks ideas for his or 
her own sake and links to his or her innate values and beliefs. Therefore, this study pro-
poses the following hypothesis:

H3  Computational thinking has a positive influence on self-exploration.
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The relationship between enjoyment and self‑exploration

Enjoyment is an intrinsic affective motivation that drives individuals to do something 
that they enjoy (Gomez et al., 2010; Moorthy et al., 2019; Raedeke, 2007; Teo & Noyes, 
2011). Self-exploration is associated with the framing of an individual’s identity in terms 
of intrinsic cognitive motivation (Kaplan & Madjar, 2017). Similar to enjoyment and 
self-efficacy, which are both forms of intrinsic motivation and are correlated with one 
another (Meyer et al., 2019), we assume enjoyment and self-exploration to be positively 
related. On the basis of self-determination theory, interesting or joyful classes might 
increase the engagement of students because students are eager to know and make dis-
coveries about these classes’ influences and outcomes (Ryan & Deci, 2017). Enjoyment 
might foster an individual’s psychological reflection and self-exploration. Therefore, this 
study hypothesizes that students with higher perceptions of enjoyment have stronger 
self-exploration motives.

H4  Enjoyment has a positive influence on self-exploration.

Learning satisfaction

Learning satisfaction and learning achievement are two typical indicators of learning 
effectiveness, which is an ultimate learning outcome (Hu & Hui, 2012). Learning satis-
faction is the overall level of fulfillment of a learner’s expectations that pertains to a class 
experience (Cidral et al., 2018). Because the research setting of the present study involves 
a technology-based learning environment (i.e., AppInventor) that enjoys the advantages 
of increased learning opportunities, the satisfaction of students’ requirements, the sup-
port of blended learning (both online and offline workshops), and exceedingly diversi-
fied learning, an assessment of learning performance should consider in the learning 
environment both the actual effectiveness in learning content and students’ attitudes 
and expectations (Bostrom et al., 1990). Additionally, previous literature on information 
systems and computer-assisted learning has indicated that learner or user satisfaction is 
an important measure of learning performance and the effectiveness of online learning 
system implementation (Ke & Kwak, 2013). Consequently, this study uses learning satis-
faction as the dependent variable in the proposed model.

The relationship between digital self‑efficacy and learning satisfaction

Higher self-efficacy contributes to higher academic performance and satisfaction 
(Karadag et  al., 2021). Learners with higher efficacy set higher goals and believe that 
they can achieve these goals, even when facing difficulties (Bandura, 2006, 2010). That 
is, students with higher self-efficacy may reflect and engage in their learning experiences 
and reshape their learning behaviors to achieve better learning performance. Self-effi-
cacy has been regarded as one of the critical determinants that accounts for a learner’s 
achievement in an educational setting. Zysberg and Schwabsky (2020), for example, it 
has been recently confirmed that self-efficacy acts as a mediator that links school climate 
and academic achievement (i.e., math, English and the relative rank) for middle and 
high school students. Similarly, Vayre and Vonthron (2019) suggest that both academic 
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self-efficacy and learning engagement are antecedents that predict successfully passing 
exams for students enrolled in online university courses. Therefore, this study hypoth-
esizes the following:

H5  Higher digital self-efficacy leads to higher learning satisfaction.

The relationship between self‑exploration and learning satisfaction

A university education is an important stage for employment preparation and career 
development. Before career development, individuals usually engage in self-explora-
tion to understand the relationship between their interests, values, and needs and the 
external environment through information gathering and processing, experience accu-
mulation, and self-evaluation (Cai et al., 2015). As self-exploration is a factor of career 
development, it is reasonable to assume that when individuals understand themselves 
more, their tendency is higher to engage in tasks with the purpose of enhancing their 
capabilities, namely, to learn, to understand and to develop skills. Therefore, a positive 
association between self-exploration and learning satisfaction can be expected.

H6  Higher self-exploration leads to higher learning satisfaction.

Drawing on the arguments above, the research model is shown in Fig. 1 for computa-
tional thinking, enjoyment, self-efficacy, self-exploration, and learning satisfaction and 
their hypotheses. The hypotheses are repeated below for ease of reference.

H1  Computational thinking has a positive influence on digital self-efficacy.

H2  Enjoyment has a positive influence on digital self-efficacy.

H3  Computational thinking has a positive influence on self-exploration.

H4  Enjoyment has a positive influence on self-exploration.

H5  Higher digital self-efficacy leads to higher learning satisfaction.

H6  Higher self-exploration leads to higher learning satisfaction.

Fig. 1  Research model
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Method
Measures

The proposed model with five variables and six hypotheses was assessed by using a 
quantitative survey. All constructs were measured with multiple items, and seven-point 
Likert-type scales that ranged from “strongly agree” to “strongly disagree” were used. 
The five variables were adopted from the relevant literature and modified to fit the cur-
rent research context (Cho et al., 2017). That is, learning satisfaction was measured by 
using five items adopted from Hu and Hui (2012), computational thinking was measured 
with five items modified from Durak and Saritepeci (2018), enjoyment (EJ) was meas-
ured by using four items from Kong et. al. (2018), digital self-efficacy was measured with 
four items from Kim and Jang (2015), and self-exploration was measured by using four 
items from Afzal et. al. (2010). Because the survey participants were Chinese students, 
the original instruments were translated into Chinese by a professional translator. After 
the authors ensured that the intended meaning was conveyed by the instruments, a 
reverse translation was performed to ensure accurate interpretation (Cidral et al., 2018). 
These items and sources are listed in Appendix 1. The questionnaire is divided into five 
sections, each of which consists of questions designed to elicit information about one of 
the constructs, specifically, computational thinking, enjoyment, self-efficacy, self-explo-
ration, or learning satisfaction.

The context, participants, and procedures

Data were collected from a university in northern Taiwan. The university opened a lib-
eral education course worth two credits. The course was a mobile device programming 
class that was available only to undergraduate students whose major was not STEM. This 
course aimed to teach students how to solve problems by identifying the problem and 
understanding the modeling, abstracting, and designing of an algorithm and by teach-
ing basic computer programming concepts to students who were without programming 
skills. AppInventor (https://​www.​appin​ventor.​mit.​edu/), which was originally invented 
by Google and transferred to the Massachusetts Institute of Technology (MIT) for oper-
ation and management in 2012, served as the main instrument for teaching computa-
tional thinking concepts in this course, while other problem-solving techniques, such 
as flowcharts and case studies, were discussed in the class. To gain hands-on compu-
tational thinking experiences and inspire learning interest, students who took the class 
practiced how to solve daily problems with AppInventor. Specifically, the instructor used 
online restaurant ordering, body mass index (BMI), and a ninety-nine multiplication 
table as the course materials to deliver the core concepts of computational thinking. The 
students could build their own apps after observing the instructor’s initial demonstra-
tion. Some of the student works are shown in Appendix 2. Moreover, the students were 
assigned a term project to propose how to leverage their skills and application of compu-
tational thinking in their daily life or profession.

At the end of the school term, the instructor communicated the objectives of the sur-
vey to all students who took the class and emphasized that there were no definite right 
or wrong answers or perspectives and that answers to the survey would not impact their 
class performance. Later, a follow-up email with a link to a GoogleDoc survey was sent 

https://www.appinventor.mit.edu/
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to all students to encourage them to participate. A small amount of extra credit was 
offered to encourage students to complete the survey (Shapiro et al., 2017). The students 
voluntarily completed the survey, and they could choose to omit their name if they had 
any concerns. Of the 276 enrolled students from six classes in five semesters, 190 stu-
dents participated in the survey for a 71.7% participation rate. The gender distribution 
was 68.9% female and 31.1% male. Of the sample, 36.8% were 1st-year students, 49.5% 
were 2nd-year students, 3.7% were 3rd-year students, and 10.0% were 4th-year students.

Results
Because the proposed model contains five constructs, which are also referred to as latent 
variables, and the purpose of this study is to explore the relationship among these con-
structs, structural equation modeling (SEM) is suitable for assessing the results (Hair 
et al., 2017a). SEM is a statistical method that examines and tests causal relationships 
with a combination of statistical data and theoretical causal assumptions (Sarstedt et al., 
2017). There are two types of SEM techniques, namely, covariance-based SEM (CB-
SEM) and partial least squares SEM (PLS-SEM). CB-SEM is a parametric statistical 
method that is primarily used for the confirmation of an established theory. Accordingly, 
statistical significance is a standard output of this technique; in contrast, PLS-SEM is 
considered to be more relevant for analyzing complex models and exploratory research 
(Lee & Jung, 2021).

To assess the proposed model and test the study hypotheses, the present study applied 
PLS-SEM to examine the relationships among the constructs in complex models. There 
are several advantages to using this technique. First, PLS-SEM comprises a measure-
ment model and a structural model evaluation, which makes it superior to the one-step 
evaluations of SEM (Hair et al., 2010; Molinillo et al., 2018). The structural model exam-
ines the relationships among constructs in structural models, whereas the measurement 
model assesses the reliability and validity of the constructs (Hair et al., 2017a, 2017b). 
Reliability refers to the consistency of the scale items (Hair et al., 2017b). The measure-
ment indicators include individual item reliability and internal consistency. Factor load-
ing is usually used to assess individual item reliability. In contrast, composition reliability 
(CR) and the Cronbach’s alpha are two metrics that test the internal consistency of the 
latent variable. The recommended threshold value must exceed 0.7 (Hair et al., 2017a, 
2017b).

Validity refers to the correctness of the scale items, and the measurement metrics usu-
ally include convergent validity and discriminant validity. Convergent validity measures 
the correlation between items within the same construct. Discriminant validity measures 
the correlation between items with different constructs. The average variance extraction 
(AVE) is a suitable indicator to detect discriminant validity, providing the recommended 
threshold value exceeds 0.5 (Hair et  al., 2017a, 2017b). If the square root value of the 
diagonal AVE is greater than the correlation coefficient value of the horizontal or verti-
cal column, then this represents discriminant validity (Hair et al., 2017b).

Second, PLS-SEM is particularly suitable for research in fields such as education and 
requires only a limited sample size (Goh & Yang, 2021; Hair et al., 2017a). Otherwise, the 
data do not follow a normal distribution (Molinillo et al., 2018). Moreover, as in the pre-
sent research, predicting capability and evaluating the relationships of latent variables 
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(unobservable constructs) enable PLS-SEM to develop exploratory analysis models 
(Hair et al., 2017a). Unlike traditional statistical techniques such as a t-test and analysis 
of variance (ANOVA) that examine whether the group means differ from one another 
or whether one group’s mean differs in different times, PLS-SEM enables the education 
studies to explore the structural relationships among a group of latent variables. Addi-
tionally, PLS-SEM is more suitable for exploratory studies to understand the specific 
path coefficients and variance of the dependent variable as explained by the independ-
ent variables in the proposed framework instead of examining the goodness of model fit 
(Hair et al., 2017a, 2017b; Lee & Jung, 2021).

Assessment of the measurement model

The measurement model estimates construct validity and reliability, including conver-
gent and discriminant validity. The Cronbach’s alpha, which represents construct reli-
ability, is used to test the reliability of all constructs in the proposed framework. The 
Cronbach’s alphas fell between 0.911 and 0.966 for all constructs in this research model. 
These values far exceed the threshold of 0.7 (Nunnally & Bernstein, 1994). In addition, 
the composite reliability (CR) was beyond 0.938, which far exceeds the cutoff value of 
0.5 (Chin & Gopal, 1995). These results confirm the internal reliability of each construct. 
Moreover, estimated pairwise correlations between factors did not exceed the 0.85 limit 
(Kline, 2015). The average variance extracted value (AVE) was applied to examine con-
vergent validity. The outcome AVE value fell between 0.790 and 0.907, which exceeded 
the cutoff value of 0.5 (Hair et al., 2010). Fornell–Larcker criteria are commonly used to 
test discriminant validity and require that the square root of the AVE be greater than all 
correlations between each pair of constructs (Fornell & Larcker, 1981). The reliability 
and convergent validity results of the proposed constructs are summarized in Tables 1 

Table 1  Reliability and convergent validity

AVE Composite reliability Cronbach’s alpha

Computational thinking 0.835 0.962 0.950

Enjoyment 0.907 0.975 0.966

Learning satisfaction 0.876 0.972 0.964

Digital self-efficacy 0.790 0.938 0.911

Self-exploration 0.899 0.973 0.962

Table 2  Correlation among the construct scores

The boldface figures on the diagonal represent the square root of the AVE figures

Computational 
thinking

Enjoyment Learning 
satisfaction

Digital 
self-
efficacy

Self-exploration

Computational thinking 0.914
Enjoyment 0.782 0.952
Learning satisfaction 0.788 0.791 0.936
Digital self-efficacy 0.730 0.769 0.800 0.889
Self-exploration 0.793 0.803 0.827 0.823 0.948
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and 2. Additionally, the factor loadings of items fell between 0.872 and 0.968, which 
exceeded the cutoff value of 0.5 (Lee & Jung, 2021), as displayed in Appendix 1.

Assessment of the structural model

PLS uses bootstrapping with a substantial resampling (3000 times in this study) to 
compute the beta (β), R2, and respective t-statistics of the structure model (Hair et al., 
2017a). The beta (β) represents the regression path coefficient. The t-statistics test the 
statistical significance of both the outer and inner models and are also provided with 
t-value ≥ 1.96, t-value ≥ 2.58, and t-value ≥ 3.29, which denote p < 0.05, p < 0.01, and 
p < 0.001, respectively (Field, 2009). The R2 value indicates the explained variance of the 
endogenous latent variables for the structural model. A graphic illustration of the struc-
tural model for this study is given in Fig. 2, while a summary of the hypotheses is pre-
sented in Table 3.

Based on Fig.  2 and Table  3, all proposed hypotheses in the research model were 
supported.

•	 Computational thinking had a statistically significant positive impact on digital self-
efficacy (β = 0.329, t-value = 3.976, p < 0.001), which supports H1.

•	 Enjoyment had a statistically significant positive impact on digital self-efficacy 
(β = 0.512, t-value = 6.253, p < 0.001), which supports H2.

•	 Computational thinking had a statistically significant positive impact on self-explora-
tion (β = 0.425, t-value = 5.549, p < 0.001), which supports H3.

Fig. 2  Results of the research model

Table 3  Summary of the hypothesis results

β t-statistic p-value Result

H1: Computational thinking → digital self-efficacy 0.329 3.976 *** H1 supported

H2: Enjoyment → digital self-efficacy 0.512 6.253 *** H2 supported

H3: Computational thinking → self-exploration 0.425 5.549 *** H3 supported

H4: Enjoyment → self-exploration 0.470 6.586 *** H4 supported

H5: Digital self-efficacy → learning satisfaction 0.371 4.671 *** H5 supported

H6: Self-exploration → learning satisfaction 0.522 6.592 *** H5 supported



Page 12 of 21Liao et al. Int J Educ Technol High Educ           (2022) 19:43 

•	 Enjoyment had a statistically significant positive impact on self-exploration 
(β = 0.470, t-value = 6.586, p < 0.001), which supports H4.

•	 Digital self-efficacy had a statistically significant positive impact on learning satisfac-
tion (β = 0.371, t-value = 4.671, p < 0.001), which supports H5.

•	 Self-exploration had a statistically significant positive impact on learning satisfaction 
(β = 0.522, t-value = 6.592, p < 0.001), which supports H6.

Moreover, the interpretation of variation (R2) from computational thinking and 
enjoyment to digital self-efficacy was 0.634. The R2 from computational thinking and 
enjoyment to self-exploration was 0.714, and that from digital self-efficacy and self-
exploration to learning satisfaction was 0.728.

Discussion
The findings show that computational thinking has a positive impact on both digital 
self-efficacy (β = 0.329, p < 0.001) and self-exploration (β = 0.425, p < 0.001), and enjoy-
ment also has a positive impact on both digital self-efficacy (β = 0.512, p < 0.001) and 
self-exploration (β = 0.470, p < 0.001). Furthermore, both digital self-efficacy (β = 0.371, 
p < 0.001) and self-exploration (β = 0.522, p < 0.001) have a positive impact on learn-
ing satisfaction. These findings have several implications. First, computational think-
ing courses are not proprietary to STEM curricula or precollege students. Empirically 
confirming a previous study (Czerkawski & Lyman, 2015), this study empirically sug-
gests that non-STEM college students can enjoy the learning benefits of computational 
thinking and take an interest in computational thinking classes. That is, computational 
thinking teaches a set of transferable and marketable skills that are appropriate for any 
domain.

Next, computational thinking fosters digital self-efficacy (β = 0.329, p < 0.001), even in 
students in non-STEM majors. The results indicate that computational thinking classes 
can stimulate students to think about how to understand themselves and explore new 
ideas. This implies that students might think about how to use these skills to solve prob-
lems in their majors or related areas.

In addition, this study shows that enjoyment is a factor of digital self-efficacy 
(β = 0.512, p < 0.001). Previous studies have shown that enjoyment is positively associ-
ated with digital self-efficacy (Mun & Hwang, 2003; Wei et al., 2020) and learning sat-
isfaction in online learning settings. This study shows that interesting or game-based 
classes can promote student digital self-efficacy. Interesting classes can remove or reduce 
learning barriers and encourage students to challenge themselves and can enhance stu-
dent growth and development.

Furthermore, this study creates a computational thinking class with a suitable 
design by adding an interesting element and can promote learners’ digital self-efficacy 
(β = 0.512, p < 0.001) for non-STEM-major students, which further enhances their learn-
ing satisfaction.

Finally, this study contributes to the literature on computational thinking learning in 
that self-exploration is an antecedent of learning satisfaction (β = 0.522, p < 0.001). Self-
exploration helps prepare students for career development and vocational choices (Flum 
& Kaplan, 2006). In this study, students with a higher degree of self-exploration skills 
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showed greater readiness for career preparation. Accordingly, classes that can increase 
student confidence in career preparation will lead to higher learning satisfaction.

This study has several implications for computational thinking instructors. AppInven-
tor is an effective instrument for learning computational thinking and for the promo-
tion of computational thinking education. In addition to developing problem-analysis, 
thinking, and problem-solving skills, computational thinking learning assists students 
in understanding themselves. Furthermore, instructors can encourage students to use 
computational thinking to solve problems in their domains or daily lives to enhance 
their learning satisfaction. Although AppInventor contains entertaining ingredients, 
an instructor might add more entertaining factors to his or her classes. This study, for 
example, used restaurant ordering as a lab exercise for learning content. A practical but 
interesting daily problem might help or persuade a student to overcome challenges and 
increase learning satisfaction. Correspondingly, this study provides educational policy 
makers with a venue for computational thinking education for non-STEM college stu-
dents. Computational thinking educational resource allocation for non-STEM college 
students will enhance overall social thinking skills. Additionally, as enjoyment can effec-
tively lower the learning barrier, computational thinking educational resource configura-
tion can be linked to joyful or playful learning material.

Limitations
One limitation of this study is that all participants were students at a college located 
in northern Taiwan. Future studies might investigate the effect of cultural, social, or 
economic factors on computational thinking learning performance for non-STEM 
college students.

Another limitation of this study is that AppInventor limits the learning material con-
sidered. In addition to AppInventor, other relevant learning tools, such as Turtle Art, 
Scratch, Code.org, and Scalable Game Design (Hsu et al., 2018), could be considered for 
similar studies. Future studies should examine the learning outcomes of other tools. It 
would be interesting to explore the relationships between information and communica-
tions technology (ICT) learning tools and non-ICT tools such as flow charts, fishbone 
diagrams, brain storming, and mind maps. Understanding the role of the relationships 
between these tools will help learners obtain comprehensive problem-solving skills and 
transferable knowledge.

Finally, because the course was not mandatory but elective, it might also be a limita-
tion of this study that non-STEM students had the choice of enrolling or not enrolling in 
this particular course, and those who enrolled already may have had a positive attitude 
toward technology, programming and computational thinking. Future studies might 
investigate a comparison of the results of this class property (mandatory vs. elective) or 
other factors that affect attitudes toward computational thinking.

Conclusion
This study affirms that non-STEM college students can effectively learn computational 
thinking with the support of proper learning instruments. As society becomes increas-
ingly digitalized, it is virtually certain that non-STEM knowledge workers will be 
required to interact with information technology professionals in a variety of domains. 
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Learning computational thinking does not make it possible for a student who does not 
understand how to program to become a qualified programmer, but it does cultivate the 
thinking and logic competencies for problem solving and aids the student in interacting 
across domains.

These findings also emphasize the importance of the computational thinking cur-
riculum in self-exploration and how effective computational thinking learning can be 
achieved. The findings of this study help make the argument that computational think-
ing provides benefits across the curriculum. Furthermore, these findings encourage pol-
icy makers to allocate resources to expand the use of this beneficial educational tool in 
the classroom.

Appendix 1. Questionnaire items and sources

Construct Item Factor loading Source

Computational thinking CT1. I can learn analytical skills 0.874 Durak and Saritepeci (2018)

CT2. I can learn problem-solving skills 0.926

CT3. This class can train my thinking 
skills

0.920

CT4. This class can strengthen my think‑
ing skills

0.901

CT5. This class can improve my capabili‑
ties

0.945

Enjoyment EJ1. Programming is interesting 0.950 Kong et. al. (2018)

EJ2. I am curious about the content of 
programming

0.936

EJ3. I think the content of program‑
ming is fun

0.955

EJ4. I am very attracted to computer 
programming activities

0.968

Self-efficacy SE1. Compared with other students in 
this class, I expect to do well

0.895 Kim and Jang (2015)

SE2. I am certain I can understand the 
ideas taught in this course

0.872

SE3. I expect to do very well in this class 0.910

SE4. Compared with others in this class, 
I think I am a good student

0.877

Self-exploration SX1. I want to understand myself better 0.944 Afzal et. al. (2010)

SX2. I want to explore new ideas 0.940

SX3. I want to challenge myself 0.953

SX4. I want to enhance my personal 
growth and development

0.955

Learning satisfaction LS1. I like the idea of learning AppIn‑
ventor in a lab like this

0.921 Hu and Hui (2012)

LS2. Learning AppInventor by taking a 
lab like this is a good idea

0.944

LS3. My learning experience in this lab 
is positive

0.953

LS4. Overall, I am satisfied with this lab 0.909

LS5. As a whole, the lab is effective for 
my learning AppInventor

0.952
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Appendix 2. Some student works
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(A)Restaurant Ordering App



Page 17 of 21Liao et al. Int J Educ Technol High Educ           (2022) 19:43 	

(B) BMI Calculator
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(C) Ninety-nine Multiplication Table
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