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Introduction and motivation
The ability to face problem-solving challenges of STEM disciplines—i.e., science, tech-
nology, engineering and mathematics—is nowadays universally considered as a crucial 
skill (Siekmann and Korbel 2016; Marginson et  al. 2013; Watt 2016). Computational 
thinking has been defined as the capacity of undertaking a problem-solving process 
in various disciplines using techniques that are distinctive of computer science (Wing 
2006). At the core of these techniques stand the skill of computer programming, com-
monly called coding. We may therefore say that coding abilities are a fundamental build-
ing block of any computational-thinking based approach to teaching. In view of this, 
this paper concentrates on the important problem of developing new methods and tools 
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to simplify the teaching and learning of coding. This is a complex problem, that poses 
several important challenges. Among these, the prominent one is that acquiring cod-
ing skills requires abstraction capabilities. In fact, it has been argued that learning to 
program is difficult (Qian and Lehman 2017), and that so far “three decades of active 
research on the teaching of introductory programming have had limited effect on class-
room practice” (Pears et al. 2007). The main reason for this is that several of the typical 
coding tasks require capacity of abstraction:

•	 Data structure design: the first one is the conceptualization of the data of the prob-
lem at hand, and the choice of a proper representation in terms of the primitives and 
data structures.

•	 Program construction and interpretation: the second one is concerned with the 
development of algorithms and of the actual source code. A crucial requirement to 
carry this step is the ability to construct a model of the code execution, i.e, of the 
semantics of the program. The execution of a program consists in a sequence of 
actions executed by the machine. From the perspective of the developer, this hap-
pens largely within a black box, and therefore at first it is difficult to understand for 
novice programmers. To become good programmers, students need to develop the 
ability to make a mental model of the semantics of their programs.

•	 Test and interpretation of results: the third task, once the code has been designed, 
consists in testing the code in order to verify its correctness, possibly identifying and 
removing bugs. Debugging is largely related to program interpretation—students 
must develop the skills to identify in which way inconsistent results or errors at runt-
ime are related to the program source code.

A number of studies (Dehnadi 2006; Ma et al. 2007) have investigated the complexity of 
learning to perform these tasks. While there are largely different points of view, all stud-
ies concur in pointing out that this is a difficult problem with an extremely high learning 
risk, as discussed in the next section.

Previous approaches and their limitations
Many different approaches have been proposed throughout the years to facilitate the 
task of teaching computer programming (Bers et al. 2014; Marín et al. 2018) and some 
efforts have been made in classifying different tool approaches to make easier the learn-
ing of programming (Kelleher and Pausch 2005). We first briefly mention that method-
ologies for teaching coding can be seen as specific instances of the more general class of 
methodological approaches to education (Grossman et al. 2009), including the classical 
theories of behaviourism, cognitivism and constructivism.

For the purpose of our analysis especially interesting are robot-based programming 
platforms (e.g., Lego Mindstorms). These have proven to be quite successful, especially 
among children. In these platforms, each student has a physical robot, often assembled 
by her/himself. Using a personal computer and a visual programming language, students 
can issue sequences of commands to trigger actions of the robot (i.e., rotate the wheels 
of x degrees, turn to the left of y degrees, activate the infrared sensor, and so on), and 
see the results. This approach has a great advantage, namely immediate feedback. In 
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essence, students visually perceive interactively the effect of each instruction they add to 
their code. It is easy to see that this greatly simplifies program interpretation, one of the 
main problems as discussed above, and eases the abstraction barrier to coding.

The success of the adoption of physical—i.e., hardware—robots for the purpose of 
teaching coding has inspired a class of software approaches, called microworlds. These 
can be seen as a special category of a larger class of software-visualization environments, 
that also includes algorithm-visualization tools and program-visualization tools (Sorva 
et al. 2013). Microworlds are programming environments centered around robot-based 
metaphors (Bers et  al. 2014)—have been widely used for the purpose of introducing 
children to programming. The microworlds are based on constructivist learning theory, 
that predicates that learning must rely on building things that are tangible and share-
able (Ackermann et al. 2009). The original Lego computing platform (Harvey 1997) was 
based on nothing more than on a turtle-like programmable robot. The cMinds project 
(Tsalapatas et al. 2012), has also used robots to visualize algorithms to primary-school 
students.

The goal of algorithm-visualization tools (Hundhausen et  al. 2002; Urquiza-Fuentes 
and Velázquez-Iturbide 2009) is to provide a graphical representation of the inner struc-
ture of an algorithm, e.g., binary search or select sort. Students may interact with this 
graphical representation and manipulate it. In this, these approaches may be seen as an 
instance of constructionism theories. Notice that most of the recent platforms for teach-
ing coding, e.g., code.org1 or Scratch2, use a combination of microworlds, i.e., coding 
tasks that are based on the programmable-robot analogy, ranging from mice and mazes 
to Angry Birds, and algorithm-visualization tools, under the form or block-based pro-
gramming. Block-based programming tools like provide building blocks corresponding 
to basic programming constructs and allow students to assemble them using drag and 
drop.

Finally, the purpose of program-visualization tools (Sorva et  al. 2013; Kölling et  al. 
2003; Moreno et al. 2004) is to provide a simplified, graphical debugger that allows to 
interact with the runtime execution of code. They are often integrated into a custom 
educational  Integrated Developement Environment (IDE) and provide a complete 
working environment for the novice programmer.

Recently, some tools have been developed to facilitate the learning of computer pro-
gramming combining block-based programming with text-based programming. Green-
foot (Kölling 2010) is a tool that can be installed and permits to learn object-oriented 
programming. It allows creating “actors” which live in “worlds” such to build video-
games. These “objects” can be created through a Graphical User Interface (GUI) and 
then can be programmed with real Java code. Code Genie (Jawad et al. 2018) is a web 
tool, where the GUI is developed to mimic a classical IDE. With Code Genie is possible 
to learn JavaScript: users learn how to call functions with the right parameters to paint 
images, but also learn how to use conditional statements and loops. The GUI helps them 
to write code just by clicking on a button and then modifying the parameters or they can 

1  http://www.code.org.
2  https://scratch.mit.edu/.



Page 4 of 26Mecca et al. Int J Educ Technol High Educ           (2021) 18:12 

write directly the source code. Code Genie uses a gamification strategy based on “share” 
and “like” such to create a genuine competition among the users.

Among these approaches, robot-based tools—both hardware and software ones—have 
proven to be the most successful. Experience tells that these approaches are effective in 
the early stages of learning, due to two key ideas:

•	 the idea of providing immediate visual feedback through an actual movement of the 
robot for each instruction that is added to the code (e.g., “move the robot one step to 
the left”);

•	 the idea of making it more explicit what is the ultimate goal of a program, so that 
coding is more concretely perceived as a sequence of actions that brings the system 
from an initial state to a desired target state (e.g., “bring the animated character out-
side of the maze”).

Despite these powerful intuitions, these approaches fall short as soon as we move to 
more ambitious learning goals. In fact, hardware-based platforms are inherently limited 
in scope, since they can only be used to command robots, and are not suitable to write 
general-purpose programs. Software-based microworlds are usually confined to toy 
examples, and do not capture the complexity of an industrial-level programming lan-
guage as Python or Java.

It is also important K-12 students are “digital natives”, since they were born after Web 
and mobile services had become integral part of our everyday life. They are accustomed 
to using sophisticated apps in their everyday life. To make computational experiences 
interesting to them, there is a strong need that coding is based on current technology, 
so that they are capable to produce artifacts that are comparable to those they manip-
ulate daily. This, in turn, requires to make them familiar not only with basic coding 
techniques, but also with more advanced concepts, like object-oriented programming, 
graphical user interfaces, and, to some extent, also Web and mobile applications.

Contributions
This paper makes several important contributions towards the goal of fostering the 
adoption of innovative tools and methods to teach computer programming in secondary 
schools and university 1st-year courses:

•	 It develops a set of consistent metaphors to introduce the concepts of programming. 
By adopting the metaphors, instructors can work with students through the con-
cepts of programming with a very concrete, visually perceivable counterpart to all 
of the inner workings of a programming language, in order to ease the approach of 
students to coding, reduce their cognitive load and the “black box” effect associated 
with source code.

•	 Differently from other proposals that have similar goals, the metaphors consider both 
introductory coding, i.e., procedural-programming concepts like variables, assign-
ments, control structures and so on, i.e., programming-in-the-small, and object-
oriented programming concepts like components, classes, objects, responsibilities 
and messages, i.e., programming-in-the-medium. This is an important feature of our 
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method, that can be adopted as a holistic approach to build a complex coding cur-
riculum.

•	 In addition to this methodology, we also develop a set of executable tools. The basic 
building blocks for our toolset are represented by animation actions and animation 
programs. The metaphors are translated into a library of animation actions over 
an animation scene. The scene contains the main actors of the animation—like the 
mechanical arm or the calculator, and their possible interaction. Each animation 
action animates one basic operation carried out by the processor or virtual machine 
during the execution of a piece of code, as a set of visible actions of the actors on the 
scene. In this way, each execution of a target program becomes an animation pro-
gram on the scene.

•	 We develop an engine for animation-program execution. This allows to construct 
and run animation programs offline, or in detached mode. In this mode, the anima-
tion program is not directly attached to the target-program source code, and there-
fore it does not depend directly on the target programming language. This has the 
advantage of leaving instructors with ample flexibility in choosing programming lan-
guages, possibly allowing them to mix and compare programs in different languages.

•	 In addition to offline mode, we also develop a complex development environment to 
run animations in online or attached mode. The development environment supports 
the full cycle of Java source code development and execution, with the important 
addition of automatically generating animation actions and animation programs for 
the target code. To do this, we develop a complex infrastructure that represents one 
of the main technical contributions of this work.

Based on these ideas, we believe Diogene-CT represents the first of new class of tools, 
that we may call code-animation tools, that tries to combine program-visualization 
tools with microworlds, thus providing the advantages of both while removing their 
limitations.

The Diogene-CT methodology and tools are the product of a long experience with 
innovative methods for teaching programming conducted over the last 15 years within 
introductory programming courses at the University. In the last couple of years, the 
adoption of animation programs has been successfully tested both the “Procedural Pro-
gramming” course and in the “Object-Oriented Programming” course. This allowed us 
to gain precious insights about their strength and limitations, and to refine and signifi-
cantly improve the method.

The Diogene‑CT approach
We intend to exploit the advantages of earlier approaches within our proposal, while 
at the same time removing the limitation connected to the scope of the programming 
platform. To do this, we maintain the two main intuitions of educational robotics and 
microworlds, i.e., (a) immediate visualization of the effect of instruction and (b) pro-
gram as a way to bring the computer to a visually clear target state. At the same time, 
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we deeply transform them, by constructing our metaphor3 not based on some fictional 
microworld, or some external physical robot, but rather on the actual workings of a pro-
gramming language.

We have the ambitious goal of developing a methodology and a set of tools capable of 
providing visual feedback for arbitrary programs written using programming languages 
of state-of-the-art platforms (primarily Java), and both for introductory procedural-pro-
gramming, and more complex object-oriented programming. To the best of our knowl-
edge, this is the first proposal in this direction. Achieving the goals we have set is far 
from trivial and we shall proceed in a modular fashion. Modularity is a keyword for the 
entire project. The project is modular in several respects, as follows:

•	 To start, the methodology is based on two different but interrelated metaphors. The 
first and basic one is centered around the main constructs of procedural program-
ming, like storing value by a variable or evaluating a mathematical expression. The 
second and more advanced one is constructed around the principles of object-ori-
ented programming, like constructing objects of exchanging messages for method 
invocation. Also, the tools developed in the project allow to seamlessly deep dive 
from one metaphor into the other. This richness of the method allows students to 
gain a better understanding of the actual operational aspects of programming, by 
reducing at the same time their cognitive overload.

•	 In addition to this, the set of tools developed within the project supports different 
usage scenarios. In fact, Diogene-CT is both a teaching methodology and a set of 
executable tools. Teachers may decide to only adopt the teaching methodology as a 
basis for their lectures, or also the tools that come with it.

•	 Also, the animator tool may be run both in offline (or detached) and online (or 
attached) mode. In offline mode the teacher typically develops some code, then picks 
up a usage scenario for it—e.g., calculating the size of the circle given its radius, with 
a radius of 3 cm—and uses the Diogene-CT animator to give life to the execution 
of that particular usage scenario, in an offline fashion for the actual execution of the 
code. This is the simplest use of the animator. Much more challenging is the online 
mode, in which the Diogene-CT animator is provided with a piece of source code 
written in Java and allows the student to run the code and interact with it while ani-
mating all events triggered by the code.

These ideas are described in the following sections.

The mechanical arm metaphor for procedural programming
As a first tool, we introduce a metaphor for introductory procedural programming or 
programming-in-the-small. The aim is to teach the basic concepts of any programming 
language, like variables, assignments, control structures and so on. More specifically, we 
develop a metaphor for the execution of code instructions based on the use of mechani-
cal arms. A typical scene generated by the animator for this metaphor is shown in Fig. 1.

3  By “metaphor” we intend a representation that describes a concept by referring to something that has similarities to 
that concept.
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The main elements of the metaphor are as follows:

•	 The Random Access Memory (RAM) is exemplified as a large spreadsheet of cells 
that can be named and can store values (to represent variables).

•	 The Arithmetic Logic Unit (ALU) is depicted as a calculator capable of performing 
the typical computations required in numerical and Boolean algebra.

•	 The standard input and standard output are represented by pipes connected to the 
keyboard and console screen, respectively. Animations show streams of characters 
flowing through these pipes when they are activated.

•	 Most important, the actions performed by the processor are depicted as movements 
of a group of mechanical arms. The mechanical arm represents an execution context, 
typically a function, and is responsible for animating operations carried out by the 
processor or virtual machine, like: (a) changing the contents of the memory spread-
sheet; (b) operating the calculator to perform computations; (c) activating the pipes 
to the console or from the keyboard.

•	 Finally, to clarify the importance of the control flow and the role of control struc-
tures, a lollipop sign (resembling the ones used by street policemen or crossing 
guards) indicates at any moment of the animation the number of the next instruction 
that the mechanical arm is supposed to execute.

There are more elements to the animation (especially related to procedure/function 
invocation and parameter passing), as discussed in the following sections, but what we 
have discussed so far should be enough to give an intuition of how code instructions are 
animated: each instruction causes a set of actions by the mechanical arm on the scenes, 
guided by the lollipop. Students can see all of the intermediate states of the program ani-
mation, and this removes the “black box” effect associated with the traditional execution 
of code by the machine, and makes it more transparent to students, adding the imme-
diate feedback effect that is typical of robots and microworlds. At the same time, it is 
highly flexible and can scale from simple, toy examples to fairly complex computations.

Scene of the mechanical‑arm metaphor

The mechanical arm metaphor scene is represented in Fig. 1. The main stage where 
the metaphor actors play together is composed of background elements that represent 

Fig. 1  Procedural programming staging area



Page 8 of 26Mecca et al. Int J Educ Technol High Educ           (2021) 18:12 

a typical assembly line. The conveyor belt is a sort of guide for wired puppets. The 
robot arms move to the left and to the right, forward and backward thanks to the con-
veyor belt movements. The source code projector shows how the desired source code 
lines are linked to the showed animations. The left portcullis will raise when the pass-
ing argument animation is executed and a new mechanical robot will take the place of 
the running one (a new method will be executed). The metaphor characters are: the 
executor robot, the memory registries, the lollipop sign, the calculator, the keyboard 
and the screen. The main character is the executor robot in Fig. 2a that represents the 
running method. The label on the plate of its body contains the name of the method. 
It interacts with the other scene objects and it executes each code line included in its 
body. The memory registries (Fig.  2b) are the components that have the shape of a 
huge blackboard. The blackboard is divided into five zones:

•	 the activation stack is the place where the runtime environment of the program 
keeps track of all the functions that have been called. It contains the list of method 
names that have been activated and that are waiting for their termination;

•	 the global memory panel contains all the global variables and constants instanti-
ated in memory;

•	 the main method memory panel contains all the variables and constants of the 
main method that have been instantiated in memory;

•	 the robot memory contains the variables, the constants and the parameters 
received from a generic submodule and maintains their state during the execution;

•	 the previous robot memory contains the variables and the constants of a sub-
module whose execution is not ended. It also contains the parameters passed to 
another module. It is useful to help learners in studying the passing arguments 
behavior and the state of the memory. When necessary, it updates the state of the 
variables during the execution of the submodules that are using the parameters by 

Fig. 2  Procedural programming. The mechanical arm metaphor characters
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reference. The row of each panel contains an element (variable or constant) and 
information about its address, name and value.

The lollipop sign in Fig. 2c contains the running source code line number. It helps the 
learner keep track of the state of the program execution and indicates the next instruc-
tion that will be executed by the mechanical arm. The calculator Fig. 2d is used by the 
mechanical arms to evaluate expressions and do calculations. It is useful to understand 
computer logic in evaluating the expression avoiding the typical beginners’ errors. The 
keyboard Fig. 2e indicates the user input. The robot arm acquires the user’s data flow 
and uses its content (for instance it creates new variables in the memory zone). The 
screen Fig. 2f represents the user output. The robot arm prints the user’s data flow on 
the screen display.

Commands of the mechanical‑arm metaphor

Figure 3 represents the commands needed to animate all the mechanical arm metaphor 
aspects. The execution of a program consists of a sequence of actions carried out by the 
machine. The semantics of the program is expressed through the following commands: 
show line number and show code line, cell value writer, passing arguments, use calcula-
tor, throw an exception, fetch from stdin and push to stdout. The SHOW_LINE_NUMBER 
and SHOW_CODE_LINE commands are needed to display the source code row num-
ber using animation on the top of the lollipop sign. They also display the source code 
lines inside the projector source code panel. Then, in the CELL_VALUE_WRITER the 
mechanical arm reaches the memory registries. It pulls the lever injecting new memory 
rows into the destination tables. By the PASSING_ARGUMENTS the mechanical arm 
reaches the left portcullis that stands up and a new mechanical robot takes the place of 
the running one (a new method will be executed). If the method arguments are passed, 
the animation illustrates the parameters migration from the starting memory registry 
to the destination one. The memory registries are updated consequently. The mechani-
cal arm reaches the calculator and presses the buttons simulating the calculation or the 
expression evaluation with the USE_CALCULATOR command. The calculator displays 
the result on its screen and, if necessary, the cell value writer animation is executed to 

Fig. 3  Procedural programming Diogene-CT commands
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store the results. By the THROW_EXCEPTION command a red blinking light on the stage 
indicates the occurred software exceptions. The mechanical arm simulates alarm situ-
ations going up and down on the stage. In the FETCH_FROM_STDIN the robot moves 
toward the keyboard and fetches the byte stream. If it is necessary, the cell value writer 
animation will be executed to store the input elements. Viceversa, in the PUSH_TO_
STDOUT the robot moves toward the screen and prints the output stream on it. Notice 
that these commands are typically used by instructors, rather than by students, to gener-
ate animations in detached mode.

The robot‑community metaphor for object‑oriented programming
As we mentioned, the ultimate goal of the project is to bring students to the level of mas-
tering advanced technologies, and primarily object-oriented programming, the key to all 
state-of-the-art programming platforms. Experience tells that learning object-oriented 
method is challenging, even for students that have already acquired basic programming 
skills. Basic programming—or programming-in-the-small—deals with learning the main 
instructions offered by the programming language, the techniques to represent data 
using the program variables, and the process of code development and execution. This 
is what our mechanical-arm metaphor is focused on. In addition to this, object-oriented 
programming requires that students acquire proper knowledge of programming-in-the-
medium techniques, that is, how to organize the code of an application as a set of com-
ponents—classes and objects, how to assign responsibilities to components, and how 
to exchange messages among them. In the end, each component will be described in 
terms of basic instructions, but the choice and design of components is a crucial design 
step per se. We develop a second robot-like metaphor to handle this transition. A typical 
scene of this second kind is reported in Fig. 4.

More specifically, similarly to what we did above, we design a metaphor of object-ori-
ented applications as communities of cooperating robot, each robot being a component 
(class of objects); the typical concepts of object-oriented programming (reference, mes-
sage, method, package, binding etc.) will be explained in terms of this metaphor (e.g.: 
a reference to an object is a remote control for the object; a message between objects 

Fig. 4  Object oriented programming staging area
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is a message exchanged between robots etc.). The Diogene-CT animator is designed to 
tightly integrate the two metaphors, in such a way that students may animate a piece of 
object-oriented code to have a high-level view of the cooperative behavior or objects, 
and at any moment zoom into the behavior of each single instruction by switching to the 
procedural, mechanical-arm animation to have a low-level view of the execution of the 
actual instructions.

In the rest of this section, we will introduce the metaphor for object-oriented pro-
gramming (OOP) and we will go on illustrating the scene and the commands of the 
robot-community metaphor. Our metaphor shows the execution of code instructions 
based on the communities’ interactions of the cooperating robots. The robot-commu-
nity metaphor is strictly tied to the object-oriented computer programming concepts. It 
uses similar real-world elements to easily explain the typical concepts of object-oriented 
programming. It also benefits from the mechanical arm metaphor interaction so that the 
learner can automatically zoom-in procedural programming details and zoom-out to the 
highest object-oriented interaction level.

Scene of the robot‑community metaphor

The robot-community metaphor scene is represented in Fig.  4. The main stage where 
the metaphor actors play together is composed of background elements that represent 
the virtual world of robots. The communities of cooperating robots are the places where 
classes and objects are picked up and materialized in the holographic tubes. The white 
rectangle on top is used to show the single running source code line. The object-oriented 
metaphor characters are: the robot girl, the robot boy, the remote control, the heap, the 
cluster of components and the broom. The first character is the robot girl. Every time 
a class constructor or a static method is executed the avatar that symbolizes the class 
Fig.  5a is materialized into the holographic tube. It semantically represents a generic 
OOP class and its animations tend to illustrate the class behaviors: static or objects 
method invocations, properties usage, and constructors’ execution. Thus, the robot boy 

Fig. 5  The robot-community metaphor characters
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is generated by the robot girl. Every time a class instance is instantiated or an object 
reference is used, the avatar representing the object Fig. 5b is materialized into the holo-
graphic tube. It semantically represents a generic OOP object and its animations tend 
to illustrate the object behaviors (i.e.: static or object method invocations and proper-
ties usage). The use of the remote control semantically represents the object reference 
Fig. 5c and the exchange of messages. The laser light reaches the opposite part of the 
scene lighting up methods or properties of the referenced element. The remote con-
trol helps learners understand the basic elements of object-oriented programming. The 
fundamental mechanism of the program execution is the exchange of messages among 
components. The heap is the element of the metaphor that represents the town where 
robots live and interact in Fig. 5d. When a class is first used or every time a new object 
is instantiated, their little avatar is positioned on the globe. The existence of the little 
elements allows learners to explore the state of the components and to keep track of 
the changes. The cluster item Fig. 5e groups the components to help manage the virtual 
space. When more than a fixed number of elements is disposed of simultaneously they 
will be grouped and then accessible clicking on the cluster item icon. The content of the 
cluster can be displayed using a pop-up window Fig. 5f and the details of each element 
Fig. 5g can be further explored. The use of the broom Fig. 5h semantically illustrates the 
garbage collector execution.

Commands of the robot‑community metaphor

Figure 6 contains the commands needed to animate all the robot-community metaphor 
aspects. The execution of a program consists of a sequence of actions executed by the 
machine. The semantics of the program is expressed through the following commands: 
create a new object, zoom to the component, component message, garbage collector and 
the end component execution. In the command CREATE_NEW_OBJECT the robot girl 
hologram appears inside a tube on the scene. It presses the button on its chest simulat-
ing in this way the invocation of a specific constructor method. The factory class disap-
pears and is replaced by the new robot boy instance; the remote control representing the 

Fig. 6  Object oriented programming Diogene-CT commands
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object reference is then materialized into the hand of the component that started the 
process. The ZOOM_TO_COMPONENT command simply materializes the selected com-
ponent into the cylinder. In the COMPONENT_MESSAGE the concept of message passing 
comes alive. The fundamental mechanism of the program execution is the exchange of 
messages among components. The animation shows a laser light that reaches the oppo-
site part of the scene lighting up the methods or properties of the referenced element. If 
the target component represents an object, then the remote control is animated other-
wise the index finger indicates the target and a red light will be emitted starting from this 
one. In the GARBAGE_COLLECTOR the use of the broom on the heap memory region 
allows to collect the components, to remove and to clean up the community from the 
objects whose remote control is no longer available. The END_COMPONENT_EXECU-
TION command simply makes components disappear from the cylinder they are placed 
in.

Gamification

To further highlight the flexibility and richness of the method, we mention that one 
additional important feature of our metaphor-based approach is that it naturally lends 
itself to gamification. Gamification is the technique of teaching problem-solving using 
games, and is already proven to be effective in computer programming (da Silva et al. 
2015; Bayliss 2009).

In the Diogene-CT approach, the goal of a game is to write a computer program that 
solves a problem, e.g., a math problem or a simple simulation of a scientific phenom-
enon. The game consists of designing the target state of the scene, i.e., the one in which 
all results have been computed, and asking students to physically enact the actual anima-
tion—either procedural or object-oriented. Students can work in group. Each of them is 
responsible of performing the actions of an element of the scene—say, the mechanical 
arm or the lollipop, or the calculator, or to conduct the actions of a component robot.

Offline/detached mode
At the core of the project stands the Diogene-CT animator. This is the module respon-
sible for generating the actual visual animation of the code. The animator relies on a 
library of actions:

•	 The action library for procedural programming includes all primitives needed to ani-
mate the moves of the mechanical arm, e.g., to change the status of the memory, to 
use the calculator, to access the keyboard and so on.

•	 The action library for object-oriented programming includes the primitives to create 
new objects, send a message to a class, send a message to an object and so on.

Actions can be composed to form animation programs. These are complex animations 
involving a sequence of actions, typically corresponding to the execution of a piece of 
actual source code, that we call the target program. The main intuition behind the use 
of Diogene-CT is to generate an animation program for each execution of the target 
program. This can be done in two different modes, depending on whether the anima-
tor has access to the source code or not. As we discussed above, the simplest usage of 
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the Diogene-CT animator is in offline, or detached mode. In this mode, the animator 
runs separately from the target program, i.e., it does not require to have access to the 
actual source code. This has advantages and limitations:

•	 Since it is not tied to the actual source code of the program, the animation can be 
built for any language or piece of code, without technological constraints. This is a 
clear advantage in terms of generality of the approach.

•	 At the same time, since the animator does not know what code it is animating, the 
teacher needs to code animation programs by hand, by composing a sequence of 
actions. This, in turn, requires fixing specific application usage scenarios.

Also in this case, offline mode is supposed to be used mainly by teachers to create 
animations for their lectures. Let us discuss a practical example. We consider the 
problem of computing the area of the circle based on the size of the radius. Suppose 
we write a piece of MatLab code like in Listing 1.

Notice that the only visible output of this piece of code in the MatLab environment 
is the following string:
circle = 18.84
It is possible to animate this code by an animation program composed of the follow-

ing sequence of actions (to simplify things we skip line codes shown by the lollipop 
and we use a pseudocode):

This animator program needs to be built by hand, stored in a file with the appropri-
ate format, and fed to the animator. The animation program is independent from the 
programming language, i.e., it is a perfectly fine animation for the equivalent piece of 
C code listed in Listing 2.
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Similarly, this could be used to teach the workings of a simple piece of FORTRAN or 
Python (procedural) code, which is an important feature of our approach. On the other 
side, let’s now consider a slightly different version of the C code, as in Listing 3.

It can be seen that now the value of variable radius is taken from the standard input, 
rather than being hardwired to 3 as it was before. Now, the animation program is still a 
valid animation for this C code, but only limited to one specific usage scenario, i.e., the 
one in which the user interactively provides 3 as the size of the radius. As soon as we 
intend to explore a different scenario—for example what happens when the user pro-
vides 0 as a value for the radius—we need to build a different animation program, as 
follows:

A similar example can be built for object-oriented programming, using for instance 
Swift and Java as programming languages. Limits and opportunities of the offline mode 
should be clear at this point: it is very flexible since it can be used to animate a wide 
variety of programming languages. At the same time, the construction of animation 
programs may become a labor-intensive and error-prone activity. Note, in fact, that any 
change to the source code of the target program requires to maintain the animation pro-
grams associated with it (one for each usage scenario).

Online/attached mode
As an alternative, Diogene-CT provides the online or attached animation mode. In this 
mode, the animator works as a fully-fledged application-development environment, in 
the sense that it has access to the actual source code. The code can be edited within the 
environment and run. During execution, the animator captures all events triggered by 
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the target program and animates them on the fly, i.e., it dynamically builds the corre-
sponding animation program. This mode of execution is dual to the offline one. It does 
not require to write any animation code—actions and animations are automatically gen-
erated based on the interactive execution of the target program. Similarly, it can handle 
all usage scenarios, since it adapts to the actual behavior of the target source code. On 
the other side, it should be apparent that this requires a very strong coupling with the 
programming language and the relative software development kit. This mode requires 
the development of a suitable driver for each programming language. Currently, Dio-
gene-CT only supports JShell, and therefore the online mode can only be used to ani-
mate Java code—both procedural and object-oriented. The development environment 
lets the learner write arbitrary source code and see its dynamic animations.

The added value of this mode is expressed by the automatic generation of the anima-
tion actions for the target code and the consequent animation program execution. To do 
this, we have developed a complex infrastructure that represents one of the main techni-
cal contributions of this work. The attached architecture (Fig. 7) shares The Scene Ani-
mations Mediator component with the detached architecture.

The idea to develop a module called Catalyst is borrowed from mechanical engineer-
ing. The principle was to elaborate a generic source code input and to produce a well-
defined output: the Diogene-CT commands. The Catalyst is designed to be as general as 
possible. At this moment, the implementation is focused on the JShell programming lan-
guage but it can be replaced with another implementation that could elaborate whatever 
programming language. During the execution, the Catalyst captures all events triggered 
by the target program and animates them on the fly (i.e., it dynamically builds the cor-
responding Diogene-CT animation commands). The events are captured by the debug-
ger logic. In effect, the debug information—that describes the source code—is used to 
generate animations. In detail, the catalyst has to transform the source code into com-
mands output and to keep track of the complete source code execution intercepting the 
target key points. In this way, dynamic breakpoints are placed to gather all the necessary 
parameters to build the commands that will be sent to the mediator.

Fig. 7  The attached architecture
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Experiments
As we mentioned, the methodology and tools discussed in this paper have been devel-
oped throughout the years within programming courses from the bachelor degree in 
Computer Science at University. More specifically, the adoption of animation pro-
grams has been systematically adopted in two courses.

	 i.	 The Procedural Programming course (PP), i.e., Coding 101, the introductory course 
to programming (1st year of the Computer Science curriculum). The PP course 
deals with introductory procedural-programming techniques in several languages, 
primarily C/C++, and secondarily MatLab, covering the basics, control structures, 
functions and modular programming, arrays and records, pointers, and an intro-
duction to data structures, with a focus on the list data structure. The final exam 
is composed of two parts: a written test with 30 multiple-choice questions to be 
completed in 40 min; a practical programming test requiring to implement a sim-
ple application with a console-based user interface that implements one or more 
algorithms on a collection—i.e., a list—of records. This is a 1st-year course, and we 
assume that most of the students do not have any programming background.

	 ii.	 The Object-Oriented Programming course (OOP), i.e., the introductory course 
to object-orientation (2nd year of the curriculum). The OOP course introduces 
classes, objects, references, methods and messages, application layers, exceptions 
and regression tests in several languages, primarily Java, and secondarily C#. The 
final exam is similar in structure to the one of the PP course: a written test with 
30 multiple-choice questions to be completed in 40 min; a practical programming 
test requiring to implement a medium-complexity application logic and the rela-
tive regression tests. Students need to choose the most appropriate data structure, 
i.e., list, set or map.

In this section we report some experimental results gathered in this framework. We 
discuss two experiments: (i) first, an analysis of course-completion stats, in order to 
assess the actual benefits of our approach in terms of learning outcomes; and (ii) second, 
a user study conducted among a group of students to gain insights about their percep-
tion of the strengths and limitations of the method.

Effectiveness on course‑completion rates

As a first set of experimental results, we report course-completion rates for different 
groups of students. We compared our test group, students that have been taught coding 
in PP and OOP with the help of the Diogene-CT method and tools, to a control group 
of students that didn’t. In order to do this, we measured the percentage of students that 
passed the final exam for the PP and OOP course from academic year 2013–2014 to 
2018–2019. While instructors and course contents remained largely unchanged, the 
teaching methodology has evolved significantly through these years:

•	 In 2013–2014 and 2014–2015 no Diogene-CT techniques were employed within the 
course yet. We shall make reference to these cohorts as NO.
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•	 The cohort of 2015–2016 was a transitory one, in the sense that the robotic-arm 
metaphor was adopted to support the introduction of programming concepts, but 
the Diogene-CT toolset was not production-ready at the time, and therefore more 
rudimental tools were used. We shall make reference to these cohorts as P, for 
“partial”.

•	 Finally, the methodology and the toolset were fully adopted in 2016–2017 and 
subsequent years. We shall make reference to these cohorts as A, since all of the 
toolset were used.

Course-completion ratios are shown in Fig.  8 with the column PP and OOP. More 
specifically, we report the percentage of students enrolled in the course that success-
fully passed the final exam at the end of the academic year. Since these data were 
gathered within real everyday academic experience, we couldn’t organize a canonical 
control group. Our intuition, however, is to use the results of the NO cohorts as con-
trols for the A (and P) cohorts.

This poses several challenges, as it is known that knowledge, attitude and maturity 
of students may significantly vary throughout the years, and this unavoidably affect 
performance. In fact, our empirical and rather coarse observation was that the overall 
quality of students has somehow decreased during these years. To make this intui-
tion more precise, we selected two other courses from our Computer Science curricu-
lum that also had a stable set of contents and team of instructors from 2013 to date, 
namely Physics (PHY), 1st year, and Foundations of Electrical Engineering (FEE), 
2nd year. Both these courses adopt a rather traditional teaching methodology, mostly 
based on theory-based frontal lessons with some additional exercises, and written 
tests.

To elaborate on the results in Fig. 8, in addition to PP and OOP, we also report the 
percentage of students that passed the final test for PHY and FEE. We also report 
trending lines for each data series.

Fig. 8  Trending lines for the percentage of students that passed the final exam on Computer Programming 
(CP), Physics (PHY), Foundations of Electrical Engineering (FEE) and Object Orienting Programming (OOP)
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It is easy to see from the chart that our intuition is confirmed, i.e., both in the case 
of the PHY course and of the FEE course the percentage of enrolled students that 
passed the final exam has almost consistently decreased in the years (see the PHY 
and FEE trending lines). The 2013–2014 represents and exception with respect to this 
trend, in the sense that the overall performance of the students was particularly poor.

Interestingly, this negative trend is not observable in both PP and OOP courses (PP 
and OOP trending lines are quite horizontal), again with the exception of 2013–2014. 
There were small decreases, but overall the percentage of students that passed the 
exams remained fairly stable, as confirmed by the trending line.

In a framework of generally decreasing success rates, as shown by the PHY and FEE 
results, we believe this is a clear indication of the fact that the introduction of innova-
tive tools as the ones described in this paper positively impacted learning outcomes. 
This confirms that the Diogene-CT method and toolset can be an effective support in 
teaching coding.

Effectiveness on learning outcomes

In this section we report a second set of experimental data about the effectiveness of 
the Diogene-CT platform with respect to learning outcomes. In order to do this, it 
is important to note that the tool has been used in two courses of the undergraduate 
computer-science curriculum at University—PP and OOP—for which teaching 
over the last decade has also based on other experimental methodologies.

More specifically, we adopt a teaching methodology that is loosely inspired on 
SOLO—Structure of Observed Learning Outcome (Biggs and Collis 2014). The most 
relevant aspect of the teaching method with respect to this paper is the organization 
of the final exam.

Exams are based on a written, multiple-choice test, and on a practical, coding test. 
During the practical tests students are required to implement a fragment of applica-
tion logic on a personal computer in our teaching lab. They use the software-devel-
opment kit used throughout the course—e.g., gcc suite for C/C++ programs, or the 
JDK for Java programs—and need to deliver a piece of software that is both syntacti-
cally and logically correct.

The final exam offers a choice between two different practical tests:

•	 the first, called the base test, is based on a simpler specification, and more stand-
ard algorithms and data structure; here the focus is on verifying that the student 
is able to write logically-correct code with a correct methodological approach in 
order to implement a simple functional specification; loosely speaking, this test 
allows students to get a C or D grade.

•	 the second, called the advanced test, has a more complex specification, less stand-
ard algorithms and data structure, it may require to code in more than one pro-
gramming language, and has a strong emphasis on test-driven development and 
regression testing; the goal is to verify if the student is able to handle a more com-
plex specification with advanced coding techniques; this test allows students to 
get an A or B grade.
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The organization of the final exams is presented to students very early during the 
course (typically during the first lesson), and students are completely free to choose 
the test to solve during the exam. Grades vary based on their choice, as discussed 
above. More important, it is made very clear, during the lessons, whether arguments 
are relevant to one level or the other.

Figure 9 shows the percentage of students that chose the advanced test and passed 
it with respect to the total number of students taking the test in the PP course for 
each academic year. Notice that grades for the advanced test reflect the increased 
complexity of the exam and are therefore consistently higher than those for the base 
test.

It can be clearly seen that introducing the metaphor has brought to a significant 
increase in the number of advanced tests, and therefore an advancement in grades 
and learning outcomes. We believe that, on the one side the adoption of the Dio-
gene-CT methodology and tools made more clear the concepts introduced during 
the lessons, thus generally improving learning, and on the other side they fostered a 
deeper involvement of students in course activities, with a strong impact on learning 
outcomes.

To prove our insights, we also conducted a t-test (Welch t-test) on the group where 
our approach was not adopted (2013–2014 and 2014–2015 years) and the one where 
our approach was completely adopted (2016–2017 and 2017–2018 years). For each 
group, we counted the number of chosen base tests and advanced tests. The null 
hypothesis we want to reject is that using our approach does not change the number 
of chosen advanced tests. Using a 0.05 confidence interval we obtained a two-tailed 
P value equals 0.0226. By conventional criteria, this difference is considered to be 
statistically significant, and we can reject the null hypothesis.

Fig. 9  % of students that chose the advanced test in the PP course
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User study

To further validate our approach, we conducted a user study among students. We 
involved two groups of students:

•	 Group 1 was composed of 3rd-year students that had attended both courses, i.e., PP 
in 2016–2017, and OOP in 2017/2018.

•	 Group 2 was composed of 1st-year students attending PP in 2018–2019.

We conducted a survey with each group. The goal of the survey was to gather feedback 
from the students about the ACME methodology. We made two different questionnaires: 
the former on the use and effectiveness of Diogene-CT and ACME in PP; the latter on 
OOP. Each questionnaire contained five questions, the first four of which were multiple-
choice (with options Very Poor; Poor; Good; Very good) and the last one open-answer.

The PP questions were as follows:

•	 Q1. Do you think that the use of metaphors and animations facilitates learning the 
basic concepts of procedural programming (variables, assignments, inputs and out-
puts)?

•	 Q2. Do you think that the use of metaphors and animations facilitates learning con-
trol structures?

•	 Q3. Do you think that the use of metaphors and animations facilitates learning the 
concepts of modular programming (use of sub-programs and passing parameters)?

•	 Q4. Do you think that the Diogene-CT metaphor helps learn several programming 
languages, since it is not linked to a specific programming language?

•	 Q5. What aspect would you like to improve on the mechanical arm metaphor and its 
animations?

The OOP questions were as follows:

•	 Q1. Do you think that the use of metaphors and animations facilitates learning the 
basic concepts of object-oriented programming (components, classes, objects, con-
structors, packages)?

•	 Q2. Do you think that the use of metaphors and animations facilitates learning the 
notions of reference and message?

•	 Q3. Do you think that the use of metaphors and animations facilitates learning con-
cepts related to inheritance and polymorphism?

•	 Q4. Do you think that the Diogene-CT metaphor helps learn several programming 
languages, since it is not linked to a specific programming language?

•	 Q5. What aspect would you like to improve on the robot-community metaphor and 
its animations?

Twenty-four questionnaires were collected Group 1 about PP (Fig. 10). All of the stu-
dents who participated in the survey had successfully completed their attendance of the 
PP course and passed the final exam. As it can be seen in Fig. 10, feedback were largely 
positive. More specifically:
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•	 Answers to questions Q1 (impact on learning basic concepts) and Q3 (impact on 
learning modular programming and functions) were largely positive. This is an 
important result since modular programming and the use of functions are typi-
cally perceived by students as a difficult topic, yet a fundamental one.

•	 Also, all answers to question Q5 (language independence) were positive, i.e., all of 
the participants acknowledged that language-independence is a crucial feature of 
the approach.

•	 The question that gave results more mixed was Q2 (impact on control structures). 
Here, while the overall judgment was largely positive, students perceived a smaller 
benefit associated with the methodology. This is understandable since the only 
scene element directly related to control structures in the procedural-program-
ming metaphor is the lollipop.

•	 Answers to Q5, the open-answer question show that students consider very 
important the availability of the attached mode to play with code and exercise at 
home.

Twenty-five questionnaires were collected from Group 2 about OOP (Fig. 11). Here 
all answers were largely positive. It is interesting to note that students showed great 
appreciation for the impact of Diogene-CT and ACME while learning inheritance and 
polymorphism, two difficult OOP topics. Also, in this case, open answers to Q5 show 

Fig. 10  Survey results: Group 1—PP

Fig. 11  Survey results: Group 2—OOP
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that the students consider the availability of the attached mode to be very important. 
Some of the students also suggested to evolve the metaphor to further ease the learn-
ing of these subjects: (a) relationship between a class and its objects; (b) packages and 
constructors; and (c) the Model-View-Controller (MVC) pattern.

Finally, 46 questionnaires were collected from Group 2 about PP (Fig. 12). In this case, 
answers were less enthusiastic than those expressed by Group 1, although they were 
still largely positive (no “Very Poor” options are chosen, and only an overall 14.28% of 
“Poor” options). This is most likely because these students were still attending the PP 
course at the time of the survey, i.e., they were still struggling with learning PP con-
cepts. Open answers to Q5 were mainly concerned with requests for improvements and 
extensions, i.e.: (a) improve string readability; (b) smoothen animations; and (c) speed-
up transitions, especially for the most obvious animations. Some of the students com-
mented that ACME can be considered a useful tool for newbies, but it is less effective 
with more experienced students. Also, in this case, answers confirmed the importance of 
the attached mode to practice in autonomy.

Based on these ideas, we believe that the results of the survey confirm the effectiveness 
of the approach when tested on the field. We will consider all comments and suggestions 
to refine and improve the method and the tools.

Summary of experiments

Diogene-CT can be seen as an holistic approach to the problem of supporting instruc-
tors and students in the task of teaching and learning coding. At the roots of this 
approach are three main components:

•	 a set of consistent metaphors, that serve the purpose of simplifying the approach to 
computer-programming concepts;

•	 a collection of executable tools, that make the attempt of introducing the metaphors 
in actual coding curricula more concrete;

•	 a pedagogical approach centered around the metaphor and toolset.

We believe that our experiments show that the combination of these features has 
brought clear advantages to our computer-science students. Results in section “Effec-
tiveness on course-completion rates” show that course-completion rates have kept 

Fig. 12  Survey results: Group 2—PP
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stable, in a general context of student cohorts of decreasing quality. Even more impor-
tant, data in section “Effectiveness on learning outcomes” show how participation in 
courses was more qualified, and this was reflected by results in final tests. Finally, our 
user study show that students perceive this approach as a valuable addition to teaching.

Discussion
As discussed in the previous section, our experiences with the system in introductory 
coding courses, both for procedural and object-oriented programming, have shown that 
the Diogene-CT approach can be highly effective. At the same time, they have provided 
precious insights about possible developments of the tool.

We typically use quite heavily the tool and the metaphor in the first part of the Pro-
cedural-Programming course. This part usually covers approximately 40 h of teaching, 
with 2:1 lessons to lab ratio, and goes from introductory concepts, like variables and data 
types, to functions, modular programming, arrays and lists. In the course of these initial 
lessons, the animations give students a very concrete perspective on the actual opera-
tional semantics of instructions, and allow instructors to discuss in great detail both 
simple concepts—like variables or parameter passing—and more complex ones, like 
recursion or pointers. The tool, when used in attached mode, also greatly helps student 
in debugging their first attempts at solving simple exercises, by providing a clear and 
graphical depiction of their logical errors.

However, we have noticed that, as soon as students become more experienced with 
coding and start dealing with medium-complexity tasks—like developing menu-based 
user interfaces, or writing algorithms on collections—they tend to rely less on the tool. 
In fact, the robot-arm metaphor may become boring when applied to very large code-
bases, since its perspective is very fine-grained, and therefore medium and upper-level 
students may get the impression that it slows them.

To solve this problem, in the second half of the course we tend to use the tool essen-
tially in detached mode. We record videos of long animations of medium-complexity 
code, and then cut the full videos to extract the most significant parts that can be useful 
to students. In this respect, we believe that it would be very useful to introduce break-
points, in the style of debuggers, to enable users to fast-track to specific points within 
the code, and a trace-like function to start and stop the generation of animations at these 
points.

The tool is perceived as a very useful addition again as soon as students are exposed 
to object-oriented programming. The introduction to objects and classes usually cov-
ers approximately 20 h of our Object Oriented programming course, also in this case 
with a 2:1 lessons to lab ratio. Throughout these lessons, the possibility of exploring 
code executions by looking at the sequence of messages and the heap state in typically 
appreciated by students. Similarly, the tool be very useful when introducing concepts 
like object hierarchies and binding. In these cases, Diogene-CT can be used to empha-
size the implicit association between object in a hierarchy through the “super” property.

Again, when projects become more complex and the heap increases in size the tool 
tends to become somehow less effective. Also in this case, debugger-like functionalities 
would very useful in order to restrict the collection of objects to focus animations on.
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It is important to emphasize that not all important concepts can be properly addressed 
using Diogene-CT alone. For example, methodological guidelines like information hid-
ing, the notion of interface vs implementation can only indirectly be emphasized during 
animations. Similarly, the comparison of strictly algorithmic aspects, like, for example, 
hashing vs sorting, is not among the main goals of Diogene-CT.

In this respect, we believe that Diogene-CT can be effectively used in conjunction with 
other tools, like, for example, algorithm visualization tools or UML-based code-visuali-
zation tools to complement and reinforce their abstractions.

Conclusions and future work
This paper introduces the Diogene-CT methodology and associated toolset to support 
teaching and learning computer-programming skills in school curricula of the second-
ary grade and higher. Based on the analysis of related works in this field, we argued that 
Diogene-CT represents the first of a new breed of approaches, that we called code-ani-
mation environments.

We discussed our practical experiences in the framework of the Computer Science 
bachelor degree at the University. Our user study among students that experienced 
the method in their computer-programming courses gave us largely positive feedback, 
thus confirming the effectiveness of the approach.

As future work, in addition to extensions discussed in the previous section, our goal 
is to develop Diogene-CT into a fully-fledged tool for teaching computational-thinking 
skills in secondary schools. This will require to extend the scope of the methodology into 
more interdisciplinary topics related to STEM. In this way, students would be exposed 
to a new topic (e.g., integrals in math, or levers in physics); a set of practical problems 
would be presented (e.g., compute the integral of a function or calculate one lever) and 
the learners will work in groups to develop a computer program to solve the problems by 
using Diogene-CT in attached mode.
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