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Abstract 

The influence of Artificial Intelligence on higher education is increasing. As important 
drivers for student retention and learning success, generative AI-tools like transla-
tors, paraphrasers and most lately chatbots can support students in their learning 
processes. The perceptions and expectations of first-years students related to AI-tools 
have not yet been researched in-depth. The same can be stated about necessary 
requirements and skills for the purposeful use of AI-tools. The research work examines 
the relationship between first-year students’ knowledge, skills and attitudes and their 
use of AI-tools for their learning processes. Analysing the data of 634 first-year students 
revealed that attitudes towards AI significantly explains the intended use of AI tools. 
Additionally, the perceived benefits of AI-technology are predictors for students’ per-
ception of AI-robots as cooperation partners for humans. Educators in higher educa-
tion must facilitate students’ AI competencies and integrate AI-tools into instructional 
designs. As a result, students learning processes will be improved.
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Introduction
AI-robots are agents programmed to fulfill tasks traditionally done by humans (Dang 
& Liu, 2022). The number of interactions between humans and AI-robots is increasing, 
which is a strong indicator of the integration of AI-technology into the lives of humans 
(Kim et al., 2022). A popular example is the deployment of chatbots on a website. These 
AI-robots can guide users and respond to basic user requests (Larasati et al., 2022). The 
technology behind semi-automated and fully automated human-like task fulfillment is 
based on AI-methods and AI-algorithms (Gkinko & Elbanna, 2023). These AI-methods 
and -algorithms form the main programming characteristics of AI-robots (Woschank 
et al., 2020). The features lead to an increasing similarity in the performance of humans 
and AI-robots (Byrd et al., 2021). Additionally, the appearance and behavior of AI-robots 
are becoming more human-like (Hildt, 2021). While most machines are easily distin-
guishable from humans, AI-robots might be hard to identify (Desaire et al., 2023) and 

*Correspondence:   
delcker@uni-mannheim.de

1 University of Mannheim, L4, 1, 
68161 Mannheim, Germany
2 Curtin University, Perth, 
Australia
3 University of St. Gallen, St. 
Gallen, Switzerland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41239-024-00452-7&domain=pdf
http://orcid.org/0000-0002-0113-4970


Page 2 of 13Delcker et al. Int J Educ Technol High Educ           (2024) 21:18 

the ability to identify AI-robots is one of the many challenges accompanying these new 
technologies. As a result, humans even start to attribute AI-robots with human-like 
understanding, as well as mental capacities (Roesler et al., 2021).

Accordingly, new and changing demands in humans’ digital competencies are required 
to deal with the various applications of AI-robots in all sectors of human life (Seufert 
& Tarantini, 2022). One of these fields is higher education, which is strongly affected 
by introducing AI-technology and AI-robots (Ouyang et  al., 2022; Popenici & Kerr, 
2017). Future applications for AI-technology can be found at all levels of higher educa-
tion (Ocaña-Fernández et al., 2019). On the student level, virtual AI teaching assistants 
(Kim et al., 2020; Liu et al., 2022) and intelligent tutoring systems (Azevedo et al., 2022; 
Latham, 2022) have the capability to guide individual learner paths (Brusilovsky, 2023; 
Rahayu et  al., 2023). Educators might implement automated grading and assessment 
tools (Heil & Ifenthaler, 2023; Celik et al., 2022) or create educational content with gen-
erative AI (Bozkurt & Sharma, 2023; Kaplan-Rakowski et al., 2023). The administration 
of higher education institutions has to adapt their policies to the new technology (Chan, 
2023), while incorporating learning analytic tools to improve study conditions, reduce 
drop-out rates, and adapt their study programs (Aldowah et al., 2019; Ifenthaler & Yau, 
2020; Ouyang et  al., 2023; Tsai et  al., 2020). These developments are embedded into 
national policy-making processes, such as creating ethics guidelines (Jobin et al., 2019) 
and competence frameworks (Vuorikari et al., 2022) for AI-technology.

According to recent studies, first-year students enter institutions of higher learning 
with various perceptions and expectations about university life, for instance, in terms 
of social aspects, learning experiences, and academic support (Houser, 2004). While 
students’ generic academic skills appear to be well-established for coping with higher 
education requirements, their competencies related to AI seem to be limited (Ng et al., 
2023).

As of now, there are no conceptual frameworks that cover the use of human-like AI-
technology, focusing on first-year students within the context of higher education. Thus, 
this study is targeting this research gap. For this purpose, seven functionalities of AI-
tools have been conceptualized for their application in the context of higher education. 
This conceptualization is a helpful differentiation to analyze the intent and frequency 
of use, as well as possible indicators that might affect intent and frequency of use. As a 
result, implications for further implementing AI-tools in higher education learning pro-
cesses will be derived.

Background
First‑year students

First-year students’ perceptions and expectations and how they cope with academic 
requirements in higher education have been identified as important factors for learning 
success and student retention (Mah, & Ifenthaler, 2018; Tinto, 1994; Yorke & Longden, 
2008). Several studies identified a mismatch between first-year students’ perceptions and 
academic reality (Smith & Wertlieb, 2005). Furthermore, research indicates that many 
first-year students do not know what is expected at university and are often academi-
cally unprepared (Mah & Ifenthaler 2017; McCarthy & Kuh, 2006). Students’ prepared-
ness is particularly relevant concerning generic skills such as academic competencies, 
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which they should possess when entering university (Barrie, 2007). Numerous aspects, 
including sociodemographic features, study choices, cognitive ability, motivation, per-
sonal circumstances, and academic and social integration, have been linked to first-year 
students’ learning success and retention in higher education (Bean & Eaton, 2020; Sanavi 
& Matt, 2022). Mah & Ifenthaler (2017) identified five academic competencies for suc-
cessful degree completion: time management, learning skills, self-monitoring, technol-
ogy proficiency, and research skills. Accordingly, coping with academic requirements is 
an important driver of student retention in higher education (Thomas, 2002). Moreover, 
students’ perceptions of their first year can affect student success (Crisp et al., 2009).

More recently, it has been argued that competencies related to AI are an important 
driver for student retention and learning success (Bates et al., 2020; Mah, 2016; Ng et al., 
2023). Nonetheless, first-year students’ perceptions, expectations, and academic com-
petencies for coping with academic requirements related to AI-tools have not yet been 
researched in-depth.

Conceptualization of AI‑tools in higher education

Dang and Liu (2022) propose a differentiation of AI-robots, which is also used in this 
study. They categorize AI-robots into << mindful >> (AI-robots with increasingly human 
characteristics) and << mindless >> (AI-robots with machine characteristics) tools. The 
so-called mindful AI-robots can perform more complex tasks, react to the prompts of 
the users in a more meaningful way, and are designed to act and look like humans. On 
the other hand, mindless AI-robots perform fewer complex tasks and appear more like 
machines. In the following, a short overview of AI-tools is provided, including their main 
functionality and examples for practical use in higher education learning processes:

Mindless AI‑robots

1) Translation text generators: These tools use written text as input and translate the text 
into a different language. Translation text generators can help to quickly translate text 
into the language a student is most familiar with or to translate into a language that is 
required by the assignment. Many study programs require students to hand in (some) 
papers in a language different from the study program’s language (Galante, 2020). Two of 
the most prominent translation text generators are Google Translate and DeepL (Mar-
tín-Martín et al., 2021).

2) Summarizing/rephrasing text generators: These tools use written text as input and 
can change the structure of the text. On the one hand, they are used to extract critical 
information, keywords, or main concepts out of structured text, reducing the complexity 
of the input text. In this way, they help the user focus on the input text’s most important 
aspects, allowing them to get a basic understanding of complex frameworks. Summariz-
ing text, such as research literature or lecture slides, is an important learning strategy 
in the context of higher education (Mitsea & Drigas, 2019). On the other hand, these 
text generators can rephrase text input, an important task when writing research papers: 
In most cases, written research assignments include some theoretical chapter based on 
existing research literature. Students must rephrase and restructure existing research 
literature to show their understanding of concepts and theories (Aksnes et  al., 2019). 
Quillbot is an example of such a rephrasing tool (Fitria, 2021).
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3) Writing assistants: Writing assistants can enhance the quality of written text. These 
tools automatically check for grammar and spelling mistakes, while the text is being cre-
ated. Furthermore, these tools can give recommendations to the writer to improve the 
language used: they can provide suggestions for alternative formulations to avoid collo-
quial language and unnecessary iterations. Writing assistants are usually a part of word 
processors (e.g., Microsoft Word), but standalone programs or extensions such as Gram-
marly also exist (Koltovskaia, 2020).

4) Text generators: These tools can automatically generate written text. Text genera-
tors take short prompts as input and produce text based on this input. The output text 
is mainly used for blog entries, text-based social media posts, or Twitter messages. They 
can be differentiated from chatbots as they cannot produce more complex pieces of text. 
WriteSonic is a such a text generator tool (Almaraz-López et al., 2023).

Mindful AI‑robots

5) Chatbot: Chatbots are applications that simulate human interactions (Chong et  al., 
2021). In the context of business, they are generally used to answer customer ques-
tions automatically. In education, these chatbots help to guide learners through online 
environments or administrative processes. With the release of ChatGPT, a new kind of 
chatbot was introduced. These chatbots can produce various output formats, including 
working algorithms, presentations, or pictures, based on prompts that are very similar 
to human interactions (Almaraz-López et al., 2023; Fauzi et al., 2023; Fuchs, 2023). Stu-
dents can use chatbots to automatically produce content, which is traditionally being 
used as part of instructional design, especially final assessments.

6) Virtual avatars: Virtual avatars are digital representations of living beings. They 
can be used in online classroom settings to represent teachers and learners alike. In 
these classroom settings, virtual representations, such as Synthesia, have been shown to 
improve students’ learning performance, compared to classes without virtual represen-
tation (Herbert & Dołżycka, 2022).

7) Social-humanoid robots: These tools not only simulate human behavior and per-
form human tasks, but in many cases, social-humanoid robots are also built close to 
human complexity, featuring hands, legs, and faces (van Pinxteren et al., 2019). They can 
perform human-like mimic to various degrees. Currently, these social-humanoid robots 
are used as servers in restaurants and are tested in medical and educational institutions 
(Henschel et al., 2021).

AI‑competencies and AI‑ethics

The European DigComp Framework 2.2 is a comprehensive framework, that organizes 
different components of digital competencies deemed essential for digitally competent 
citizens (Vuorikari et al., 2022). Within this framework, AI literacy can be found in three 
dimensions: knowledge, proficiency, and attitudes. Basic ideas about the functionality 
and application areas of AI technology are allocated to the knowledge dimension. This 
dimension also holds theoretical knowledge about AI laws and regulations, such as the 
European data protection regulation. The ability of a person to take advantage of AI and 
use it to improve various aspects of their life can be found in the proficiency dimen-
sion. Successfully deploying AI technology to solve problems requires the capability to 
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choose adequate tools and consequently control these chosen tools. Competent citi-
zens must be able to form an opinion on AI technology’s benefits, risks, and disadvan-
tages. This allows them to participate in political and social decision-making processes. 
Through a meta-analysis of guidelines, Jobin et al. (2019) identifies eleven ethical prin-
ciples which must be considered when working with AI, such as transparency, justice, 
fairness and trust. Hands-on examples are the guidelines by Diakopoulos et al. (2016) as 
well as Floridi et al. (2018). The attitude dimension holds these competencies. As with 
many technological advancements, higher education will be one of the main drivers for 
facilitating digital AI-competencies (Cabero-Almenara et al., 2023; Ehlers & Kellermann, 
2019).

Furthermore, AI technology will change the various learning processes within higher 
education (Kim et al., 2022). This includes the perspective of educators (Kim et al., 2022), 
learners (Zawacki-Richter et  al., 2019), and administration alike (Leoste et  al., 2021). 
Although research indicates these impacts, research on AI-robots in higher education is 
scarce, mainly because higher education institutions rarely use the different applications 
broadly (Kim et al., 2022; Lim et al., 2023).

The functionalities of the different tools offer students various potential applications 
for learning processes. Following the Unified Theory of Acceptance and Use of Technol-
ogy (UTAUT), the intent to use new digital tools as well as the actual usage of technol-
ogy might be influenced by the expectation of performance, the expectation of effort, 
social influence, and facilitating conditions (Venkatesh et  al., 2003). Strzelecki (2023) 
states that the assumptions made by UTAUT also hold for AI-tools, more specifically 
ChatGPT, although he could not identify a significant effect from facilitating condi-
tions. In accordance with the DigComp 2.2 framework, this study focuses on students’ 
attitudes, proficiency, and knowledge regarding AI-technology as additional constructs 
influencing the intent to use and actual usage of AI-tools.

Furthermore, the study builds on the considerations by Dang and Liu (2022) and 
examines which constructs influence students’ perception of AI-technology as competi-
tors and cooperation for humans: Research in the field of AI uncovers a range of pos-
sible outcomes from increasing AI integration into human society (Einola & Khoreva, 
2023). While some argue that AI technology will compete with humans in the work-
place, leading to a massive job loss (Zanzotto, 2019) and deskilling of human workers 
(Li et  al., 2023). On the other hand, AI has the potential to be a cooperation partner 
for humans by automating processes (Bhargava et al., 2021; Joksimovic et al., 2023) or 
relieving humans from physical and psychological stress (Raisch & Krakowski, 2021).

Hypotheses

This research project aims to better understand first-year students’ perceptions as well as 
the intended and de facto use of AI-tools. While AI-competencies are understood as an 
essential driver for learning success and student retention (Ng et al., 2023), the following 
hypotheses emerge from the research gaps identified for the context of higher education:

Hypothesis 1 The underlying constructs of AI-competencies (skills, attitude, knowl-
edge) have a positive effect on the intention to use AI-robots, while the intention to use 
AI-robots has a positive effect on the actual use of AI-robots.
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Hypothesis 2a  Students’ AI-competencies and the perceived benefits of AI-technology 
are predictors for students’ perception of AI-robots as cooperation partners for humans.

Hypothesis 2b  Students’ AI-competencies and the perceived risks of AI-technology 
are predictors for students’ perception of AI-robots as competition for humans.

Method
Data collection and participants

An online questionnaire was designed to collect data from first-year students at a Ger-
man and a Swiss university. Possible participants were asked to take part in the survey 
through an e-mail, which was send through the universities e-mail system. In total, 
N = 638 first-year students participated in the survey. On average, they were 20.62 years 
old, with a standard deviation of 2.25 years. Of the N = 638 students, N = 309 identified 
as male, N = 322 as female, and N = 7 as non-binary. The lowest average use of the mind-
less tools could be found in paraphrasing and summarizing tools (M = 1.13, SD = 1.51). 
The use of online writing assistants was slightly higher (M = 1.94, SD = 1.76), and the 
highest average usage could be found in online translation tools (M = 3.53, SD = 1.18). 
The average use of mindless robots was relatively low (M = 2.2, SD = 1.05). The willing-
ness to use the robots ranged from the lowest in virtual avatars (M = 2.23, SD = 1.13) to 
the highest in online translation tools (M = 3.16, SD = 1.17).

Instrument

The online questionnaire consists of three parts. The instrument’s first part comprises 
questions regarding knowledge, skills, and attitudes regarding AI-technology (Vuori-
kari et al., 2022). The different AI-robots are presented in part 2 of the questionnaire. 
For each tool, current and intended usage was gathered, following the unified theory of 
acceptance and use of technology (UTAUT) (Venkatesh et al., 2003). The items were for-
mulated to match the different tools with those tasks that are relevant for students, such 
as writing assignments or preparing for exams. In addition, ethical considerations for 
each tool were prompted (Vuorikari et  al., 2022). The actual use of the robots by the 
participants was evaluated with a 6-point Likert scale and their potential willingness to 
use them with the help of a 5-point Likert scale. The third part of the instrument sum-
marizes items that collect demographic data. The instrument can be found in Additional 
file 1.

Analysis

A path analysis was conducted based on the factors of AI-competence, taken from the 
DigiComp2.2 framework (Skills, Attitude, Knowledge), in combination with the UTAUT 
models’ assumption that the intention to use technology influences the actual use of AI-
tools. A visualization of the model can be found in Fig. 1. The path analysis was done 
with RStudio, more specifically, the package lavaan (Rosseel, 2012).

Multiple linear regression analyses were conducted in RStudio to answer Hypotheses 
2a and 2b.
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Results
Hypothesis 1: the influence of skills, attitude, and knowledge on the intended use 

of AI‑tools

The model has a relative well fit, with a non-significant chi-square (3, 638) = 7.3, p = 0.06, 
and the fit Comparative Fit Index (CFI) = 0.96, above the respective cut-off value of 0.95. 
The Tucker-Lewis Index (TLI) = 0.91 is slightly lower than 0.95. The RMSEA = 0.05 is 
below 0.08.

The results indicate a significant positive influence of attitude (ß = 0.26, p < 0.01) and 
a significant negative influence of skills (β = − 0.1, p = 0.02) on the intention to use the 
tools. Knowledge seems to have no significant impact (β = −  0.06, p = 0.19). Further-
more, the intention to use the AI-tools significantly predicts their actual use (β = 0.33, 
p < 0.01, R2 = 0.11). The path analysis is shown in Fig. 1.

Hypothesis 2a: perceived benefits as indicators for AI as cooperation partner

A multiple linear regression was conducted to analyze the influencing factors on stu-
dents’ rating of AI as cooperation partners. Concerning students’ rating of AI as a coop-
eration opportunity, the influence of AI-competence and the perceived benefits of AI 
were included in the analysis. Both factors are significant predictors and explain 15.41% 
of the variation in the estimation of AI as a cooperation possibility for humans. F(2, 
635) = 57.84, p < 0.01. Both AI-competence, β = 0.22, p < 0.01, t(637) = 5.9 and perceived 
benefits, β = 0.27, p < 0.01, t(637) = 7.2 are significant predictors.

Hypothesis 2b: perceived risks as indicators for AI as competition

A multiple linear regression was conducted to analyze the influencing factors on stu-
dents’ rating of AI as a competitor for humans. When considering the influence of 

Fig. 1 Path analysis—skills, attitudes, and knowledge as predictors for intended and de facto use of AI-tools
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perceived risks and AI-competence on students’ rating of AI as competition, both fac-
tors explain 2.26% of the variation in the dependent factor. F(2,635) = 7.33, p < 0.01. 
While the AI-competence is a significant predictor, β = 0.09, t(637) = 10.2, p < 0.01, per-
ceived risk is not β = 0.03, t(637) = 1.64, p = 0.1.

Discussion
Findings

The analyzed data provides insights into the actual use and implementation of AI-tools 
in students’ learning process in their entry phase. So far, mindless AI-tools are favored 
by the participants compared to mindful tools. These mindless AI-tools provide useful 
functionalities regarding tasks that can be considered as typical for higher education 
programs, such as written papers, presentations, or reports (Flores et al., 2020; Medland, 
2016). These functionalities include translations (Einola & Khoreva, 2023) or summaries 
(Fitria, 2021). The analysis results show that the intention to use these tools is affected by 
students’ perceived skills, knowledge, and attitudes (Venkatesh et al., 2003). A positive 
attitude has a positive effect on the intended use of AI-tools. A positive attitude includes 
a general interest and an openness about AI technology, but also a strong interest in a 
critical discussion about AI technology. Students’ curiosity about the new technology 
leads to factual testing and might give students a better understanding of what the AI-
tools have to offer them in practice, reflecting on the challenges and opportunities of 
AI-technology. The findings of the path analysis indicate that proficiency in controlling 
the tools does not have a positive effect on the intended use. This result can be explained 
through the aforementioned importance of attitude towards AI-technology (Almaraz-
López et  al., 2023; Vuorikari et  al., 2022). Students’ curiosity for the new technology 
might outweigh their perceived need for a distinct AI proficiency.

Additionally, many AI-tools can be easily accessed and give the impression of being 
easy to use. The same argument holds for the construct of knowledge. The student’s 
intention to use AI-tools for learning processes appears to be independent of their theo-
retical knowledge of the systems’ internal functionalities. While this knowledge might 
help students to understand better the results they receive from AI-tools or increase 
their ability to formulate adequate prompts (Zamfirescu-Pereira et al., 2023), the absence 
of theoretical knowledge does not present itself as a barrier to the intended use.

Implications

These findings do have important implications for the further implementation of AI-tools 
in higher education learning processes (Heil & Ifenthaler 2023; Celik et al., 2022; Kaplan-
Rakowski et al., 2023; Latham, 2022; Liu et al., 2022; Ocaña-Fernández et al., 2019). At first 
glance, using AI-tools does not require prior practical and theoretical training from stu-
dents. At the same time, students might not be able to fully apprehend the possibilities of 
AI-tools or effectively use them to improve their learning processes (Alamri et al., 2021; 
Børte et al., 2023). Educators should, therefore, integrate these tools into their instructional 
design practices and pair them with additional practices to facilitate the students’ AI-com-
petencies (Lindfors et al., 2021; Sailer et al., 2021; Zhang et al., 2023). As a result, students 
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will be able to use AI-tools to improve their learning processes, while simultaneously being 
able to critically reflect on the input, output, and influence of the respective AI-tools.

The results of Hypotheses 2a and 2b show a significant effect of AI competence and the 
perceived benefits of AI-tools on the expected cooperation potential of AI technology 
(Bhargava et al., 2021; Raisch & Krakowski, 2021). Instructional designers and other stake-
holders in higher education need to provide best-practice examples of how AI-tools can 
be used to positively influence learning processes if they want to facilitate the usage of the 
respective tools.

Limitations and outlook

ChatGPT was not yet openly accessible when the data for this survey was collected. The 
overall usage of AI tools has likely increased since ChatGPT was introduced to a broader 
user base (Strzelecki, 2023). The presence of ChatGPT in media and scientific discussions 
might have led students to look into other AI-tools, such as DeepL (Einola & Khoreva, 
2023) or Quillbot (Fitria, 2021) as well. The composition of the student sample also limits 
the study’s results. While the University in Switzerland is more open towards the usage of 
AI technology, policymakers in German universities tend to be more restrictive towards the 
use of AI (von der Heyde et al., 2023). To overcome the limitation of the sample size, future 
studies will include students from a broader range of academic years. As a result, the gener-
alizability of the result will be improved.

The present discussion about ChatGPT and the influence of AI-tools in general on higher 
education underlines the need to educate learners about AI and their respective AI-compe-
tencies (Almaraz-López et al., 2023; Chong et al., 2021; Fauzi et al., 2023). A second study 
is currently being conducted to analyze how the introduction of ChatGPT to the public 
sphere has changed students’ attitudes toward AI and their use of AI-tools, both intended 
and factual. It can be assumed that the powerful tool leads to an increasing awareness of AI, 
as well as a broad usage over different study programs and for various tasks within higher 
education programs. Further studies should include additional research approaches to 
collect additional data about students’ experiences and usage of AI tools, such as a think-
a-loud study or interviews with students. These approaches give insights into the teach-
ing strategies which might help students to facilitate AI competences and improve their 
learning outcomes through AI tools. An example of such a strategy is a class that teaches 
students to write scientific texts with the support of ChatGPT. A comprehensive under-
standing of necessary competencies and pedagogical are the foundation for holistic AI liter-
acy programs. These programs need to be accessible for all students and flexible enough to 
adhere to different levels of prior knowledge and learning preferences. Another important 
task for ongoing research projects is the analysis of the relationship between AI competen-
cies, pedagogical concepts and the learning outcome of students, especially regarding the 
different tools which might be used in the future. Additional, longitudinal studies might be 
best suited to gather detailed data through out AI-supported learning process.

Conclusion
The increasing capabilities of AI-tools offer a wide range for possible application in 
higher education institutions. Once the gap between the theoretical chances and appli-
cable solutions is closed, multiple stakeholders, such as administrator, educators and 
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students, will be able to benefit from individualized learning paths, automated feedback 
or data-based decision-making processes. Lately, an increasing number of research work 
has been published to close this gap. The introduction of ChatGPT to the general public 
has fueled the discussions about AI technology, especially in the field of higher educa-
tion institutions. One of the challenges encased in the implementation of AI into learn-
ing processes is the facilitation of students’ AI competencies. Students need the practical 
skills, theoretical knowledge and comprehensive attitudes to unlock the potential of 
AI-technology for their learning processes. Educators and higher education institutions 
have the responsibility to create safe learning environments which foster points of con-
tact with AI as well as possibilities to actively engage with AI. These learning environ-
ments must provide students with access to relevant AI-tools and must be founded on 
holistic legal frameworks and regulations.
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