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Introduction
STEM education aims to integrate knowledge from interdisciplinary fields, fostering 
learners’ problem-solving abilities and playing a vital role in higher education (Reinholz 
et al., 2021). At the higher education level, learners are faced with increasingly complex 
problems and challenges. The interdisciplinary nature of STEM education provides 
the necessary tools to tackle a diverse range of issues (Wong et  al., 2022). In essence, 
STEM education is a learner-centric instructional model, where learners are expected 
to explore and plan their learning journey, facilitating their knowledge construction 
(Borda et al., 2020). Unlike traditional education, which tends to focus solely on evalu-
ating learning outcomes, STEM education places significant emphasis on the learning 
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engagement itself (Lee et  al., 2023a, 2023b). Therefore, effectively assessing learners’ 
learning engagement can provide insights into their performance within the STEM 
education framework, contributing to the development of well-rounded individuals in 
higher education (Smith Iv et al., 2020).

Learning Engagement, a common indicator of learners’ involvement and active partic-
ipation in the learning process, reflects the time and energy invested by learners (Wang 
et al., 2016). The relationship between learning engagement and academic performance 
has been confirmed by numerous studies (Bai et  al., 2021; Qureshi et  al., 2021). The 
ICAP is a well-established framework for assessing levels of engagement, particularly 
cognitive engagement. It categorizes cognitive engagement into four distinct levels: pas-
sive, active, constructive, and interactive. This categorization assists educators in devis-
ing more effective learning strategies (Chi & Wylie, 2014). ICAP framework has been 
widely incorporated into STEM activities in various studies to serve as a benchmark for 
assessing cognitive engagement (Hsiao et al., 2022; Lee et al., 2023a, 2023b; Lee et al., 
2023a, 2023b). Moreover, a study conducted by Lee et al., (2023a, 2023b) further sub-
stantiated the critical role each indicator within the ICAP framework plays in fostering 
student engagement during hands-on activities in STEM fields.

According to a systematic review by Gao et  al. (2020), self-reporting and observa-
tion methods dominate the measurement of learning engagement in STEM education. 
However, self-reporting, typically conducted through questionnaires or interviews after 
the course, may lead to inaccurate recall or be influenced by societal expectations (Zim-
merman, 2008). Observation methods require researchers to code images or records 
of activities to assess learners’ engagement, a method that can be time-consuming and 
costly (Harari et  al., 2017). To overcome these disadvantages, we combine the ICAP 
framework with computer vision technology to develop a system, called Real-time Auto-
mated STEM Engagement Detection System (RASEDS), effectively and instantaneously 
measuring the learners’ learning engagement. Computer vision technology is used to 
capture learners’ behaviors during group activities, and this information is mapped to 
the four levels of the ICAP framework, enabling automated measurement of learners’ 
engagement.

On the other hand, self-efficacy and engagement in STEM education share a dynamic 
and reciprocal relationship (Han et al., 2021). Self-efficacy refers to an individual’s con-
fidence and expectations of their abilities, significantly influencing their enthusiasm, 
effort, and persistence when facing challenges (Chen et al., 2001). Conversely, engage-
ment refers to the level of active interest and involvement in learning tasks (Fredricks 
et al., 2004). When learners actively engage in STEM learning, they experience success, 
mastery, and competence, fostering positive experiences that validate their abilities, bol-
ster confidence, and nurture self-efficacy (Bandura, 1977; Kuchynka et al., 2021). Con-
tinuous and meaningful engagement not only reinforces self-efficacy but also enhances 
opportunities for further success and mastery, allowing learners to showcase effective 
problem-solving skills (Han et  al., 2021). Engagement in STEM education encourages 
learners to assume responsibility for their learning, promoting personal agency and fos-
tering a sense of control and ownership over their educational experiences (Bandura, 
1977; Prince, 2004). From this, it is clear the pivotal role both engagement and self-effi-
cacy play in enhancing STEM education.
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However, traditional one-size-fits-all teaching methods often fail to cater to the varied 
knowledge bases, learning styles, interests, and abilities of all learners, leading to feelings 
of insecurity and helplessness. This not only affects self-efficacy but can also result in 
lower learning outcomes, reduced engagement, and in extreme cases, dropout or aban-
donment (Cook et al., 2018; Hu, 2022; Zhu & Wang, 2020). The introduction of adap-
tive learning can mitigate the shortcomings of traditional teaching methods (El-Sabagh, 
2021; Guerrero-Roldán et  al., 2021). However, past technological limitations made 
it difficult to timely and automatically evaluate learning engagement in STEM educa-
tion and implement adaptive learning strategies. Recently, the advancement in Artificial 
Intelligence (AI) technology has fostered a growing body of research utilizing AI to sup-
port adaptive learning in classrooms. Despite this progress, research focusing on STEM 
activities remains limited due to their complex, abstract, and multi-dimensional nature 
compared to traditional subjects (Wang et al., 2022).

Addressing these research gaps, we developed RASEDS, grounded in AI and com-
puter vision technology. This system can integrate ICAP framework to instantly assess 
learners learning engagement. Ultimately, it recommends tailored learning materials to 
facilitate adaptive learning, aiming to revolutionize STEM education through a nuanced 
understanding of engagement dynamics.

Related work
The measurement of engagement in STEM education

STEM education, which integrates knowledge and skills across the domains of Science, 
Technology, Engineering, and Mathematics, plays a pivotal role in fostering learners’ 
innovative capabilities and problem-solving abilities (Hsiao et al., 2022). It is instrumen-
tal in grappling with intricate global issues, propelling economic growth, and enhanc-
ing societal well-being (Christensen et  al., 2015). Nonetheless, STEM education faces 
several challenges including a deficiency in learners’ interest and confidence, a high 
rate of talent attrition, and a dearth of diversity (Sithole et al., 2017). Bolstering learn-
ers’ engagement in STEM education is paramount in ameliorating learning outcomes 
and piquing learners’ interest (Miller et al., 2018). Learners’ engagement, defined as the 
degree of behavioral, emotional, and cognitive investment in the learning process, sig-
nificantly impacts academic performance, motivation, satisfaction, and graduation rates 
(Huang & Wang, 2023). The primary methods to measure engagement in STEM edu-
cation are self-reporting and observation, each with its inherent limitations (Gao et al., 
2020). Self-reporting, although allowing learners to appraise their engagement through 
surveys or interviews, is susceptible to subjectivity (Baumeister et al., 2007; Paulhus & 
Vazire, 2007). The observational method, on the other hand, objectively assesses learn-
ers’ behaviors and interactions, but it may introduce bias and prove time-consuming 
(D’Mello et al., 2017).

To circumvent these constraints, recent research has begun to leverage AI technol-
ogy in educational settings to glean insights into learners’ engagement during the 
educational process. For instance, Zhang et  al. (2019) collected and analyzed data on 
learners’ facial expressions and mouse movements within an online learning environ-
ment, thereby enabling an assessment of learners’ engagement during online learning. 
Similarly, Flanagan et al. (2022) identified reading behavior features from digital learning 
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materials, using these extracted features to predict learners’ performance and engage-
ment through Support Vector Machines (SVM). This led to the establishment of an early 
warning intervention system in higher education learning environments. More recently, 
Zheng et al. (2023) created a system for self-analysis and feedback on group engagement 
in Computer-Supported Collaborative Learning (CSCL) environments, grounded in 
Deep Neural Network models (DNNs). Through a quasi-experimental design, they vali-
dated the system’s contribution to learning outcomes. Despite these advances, the con-
struction of automated systems for assessing engagement in STEM education remains a 
significant challenge (Lee et al., 2023a, 2023b; Wang et al., 2022).

In response to this challenge, the present study merges the ICAP (Interactive, Con-
structive, Active, Passive) framework with computer vision technology to develop a 
real-time, automated engagement recognition system for STEM education. This system, 
capable of effectively and instantaneously measuring learners’ engagement during the 
learning process, forms the foundation for recommending adaptive learning materials 
tailored to individual learners’ needs.

ICAP framework

Chi and Wylie (2014) proposed the ICAP framework, a categorization of learning 
engagement into four unique modes, enabling researchers to associate specific modes 
with cognitive engagement and ultimately understand the evolution of a learner’s knowl-
edge. The ICAP framework classifies in-class cognitive engagement into four modes: 
passive, active, constructive, and interactive, as detailed below:

• Passive: Learners merely assimilate information from teaching resources without 
active participation in the learning process. For example, they may attentively listen 
without taking notes or recording information.

• Active: Learners demonstrate observable actions or physical interactions. These may 
include actions such as pausing, fast-forwarding, or rewinding educational videos, 
annotating and note-taking on learning content, or employing gestures to manipu-
late learning materials for problem-solving.

• Constructive: Learners produce additional externalized outputs or products that 
extend beyond the given learning materials. This may involve activities such as 
assembling and operating robots to acquire programming knowledge or creating 
concept maps to grasp their knowledge construction process.

• Interactive: Interaction is defined by two criteria: the statements of both partici-
pants must be primarily constructive, and sufficient turn-taking must be observed 
(Chi & Wylie, 2014). Chi and Wylie (2014) stress that constructive behavior from 
both parties is essential for productive discussions. Adequate turn-taking during the 
interaction facilitates the integration of each participant’s domain knowledge and the 
adjustment of cognitive states. Interaction partners can include teachers, parents, or 
even robots, as long as these conditions are satisfied.

The ICAP framework views learning engagement as a progressive enhancement 
of learners’ cognitive states and engagement with the material (Chi & Wylie, 2014). 
Researchers often utilize the ICAP framework as an evaluative tool in various studies. 
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For instance, Raković et  al. (2020) applied the model to analyze learners’ messages in 
forums, aiding educators in understanding knowledge construction and predicting 
learners’ exam and debate performance. Liu et  al. (2022) developed the BERT-CNN 
model to automatically detect learners’ cognitive and emotional engagement, using the 
ICAP framework to evaluate the degree of cognitive engagement among learners in 
MOOC forum discussions. The practical approach of the ICAP framework facilitates a 
systematic understanding of the cognitive engagement during courses. As a result, we 
also develop a system based on the ICAP framework to assist researchers and educa-
tors in gaining a deeper understanding of learning engagement in STEM education and 
establishing a foundation for educational assessment in this field.

Adaptive learning in STEM education

In recent years, the advent of digital technology, particularly the application of big data, 
cloud computing, and artificial intelligence, has increasingly highlighted the importance 
of adaptive learning. Adaptive learning is an innovative educational approach that uses 
advanced educational technology, data analytics, and artificial intelligence to personalize 
learning content, processes, and methods. This allows educators to respond more effec-
tively to the diverse differences among learners, creating a learning experience that is 
more suitable for individual characteristics (Peng et al., 2019; Wang et al., 2023). Numer-
ous studies have verified the advantages of adaptive learning for learners. For instance, 
El-Sabagh (2021) developed an adaptive learning platform based on learners’ learning 
styles and confirmed its benefits for learners’ engagement through quasi-experimental 
design. Kabudi et al. (2021) discussed the positive impacts of incorporating AI technol-
ogy into adaptive learning in terms of enhancing learners’ performance and motiva-
tion. Wang et al. (2023) examined the influence of China’s first adaptive learning system, 
Squirrel AI learning, on large and small class teaching in a mathematics course, and con-
firmed the system’s effect on learners’ mathematical learning.

However, the implementation of adaptive learning faces several challenges in STEM 
education (Liu, 2022). First, STEM education emphasizes experimental and inquiry-
based learning to foster learners’ understanding and application of scientific concepts 
(Wang et  al., 2022). This implies that STEM curricula frequently involve lab activities 
and hands-on experiences, which are challenging to fully realize through computer-
assisted learning systems (Chang & Chen, 2022; Lin et  al., 2021). Therefore, incorpo-
rating adaptive learning into these non-computerized teaching activities requires 
researchers to explore new technologies and methods to capture learners’ statuses and 
provide appropriately adaptive support (Afini Normadhi et  al., 2019). Second, STEM 
education encourages interaction and collaboration among learners to promote prob-
lem-solving and the development of critical and creative thinking (Margot & Kettler, 
2019). In this context, learners’ learning process are often highly dynamic and complex, 
involving knowledge and skills from multiple disciplinary areas (Wang et al., 2022). Tra-
ditional adaptive learning systems may struggle to accurately identify and evaluate such 
diversified, interdisciplinary learning processes, and consequently, provide appropriate 
adaptive support (Mirata et al., 2020). Additionally, STEM curricula typically emphasize 
assessment of the learning process rather than solely relying on final exam scores (Gao 
et al., 2020). Thus, implementing adaptive learning in STEM education requires adopting 



Page 6 of 26Wu et al. Int J Educ Technol High Educ           (2023) 20:53 

more diverse, comprehensive assessment indicators to capture learners’ learning out-
comes at different levels, which poses higher demands for the design and implementa-
tion of adaptive learning systems. To address this research gap, we develop a system, 
called RASEDS based on computer vision technology and the ICAP framework. This 
system immediately comprehends learners’ engagement in STEM activities and provides 
corresponding adaptive learning materials based on the level of learners’ engagement in 
STEM activities, aiming to achieve the goal of implementing adaptive learning in STEM 
education.

Research purpose and questions
From the aforementioned discussion, it becomes apparent that there is a current short-
age of automated tools to assess learners’ engagement in STEM education. This deficit 
indirectly hampers the implementation of adaptive learning within STEM education, 
which emphasizes practical applications and collaborative work in small groups. In 
response to this issue, we leverage computer vision technology and the ICAP (Inter-
active, Constructive, Active, Passive) framework to develop a system, called Real-time 
Automated STEM Engagement Detection System (RASEDS). This system identifies the 
level of learners’ engagement during STEM activities, and based on the degree of engage-
ment, it provides corresponding adaptive learning materials. Ultimately, we aim to vali-
date the efficacy of our approach through a quasi-experimental design. This approach 
tests whether adaptive learning materials, based on engagement levels in STEM edu-
cation, result in improved engagement and self-efficacy among learners during STEM 
activities. Consequently, we attempt to answer the following research questions:

 i. Can the Real-time Automated STEM Engagement Detection System (RASEDS) 
proposed in this study effectively identify learners’ engagement in STEM educa-
tion?

 ii. Can the recommendation of adaptive learning materials based on RASEDS results 
enhance learners’ engagement in STEM activities?

 iii. Does the enhancement of learners’ engagement in STEM activities, facilitated by 
the recommendation of adaptive learning materials based on RASEDS results, sub-
sequently boost their self-efficacy?

Methodology
To address the research question, we conducted multiple “STEM Workshop: Python and 
Raspberry Pi Practical Activity” prior to the experiment. This setup facilitated the col-
lection of data required for the development and validation of RASEDS, which responds 
to the first research question. Upon establishing the effectiveness of the RASEDS, the 
system’s output can be utilized to construct STEM performance prediction model. This 
model, in turn, can recommend adaptive learning materials based on its predictions. A 
quasi-experimental design was employed in this research to validate whether the rec-
ommendation of adaptive learning materials via RASEDS enhance learners’ engagement 
and self-efficacy in STEM activities, ultimately addressing the second and third research 
questions. The research workflow is illustrated in Fig. 1.
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STEM workshop: Python and Raspberry Pi Practical Activity

To accumulate the requisite data for this modeling project, the study organized three 
single-day sessions of the “STEM Workshop: Python and Raspberry Pi Practical Activ-
ity” ahead of the experimental phase. A total of 86 learners, ranging in age from 16 to 22, 
engaged in these sessions. These workshops were designed to foster programming skills 
and to encourage problem-solving capabilities through the infusion of computer science 
principles, honoring the foundations of STEM education. During the workshops, par-
ticipants utilized their self-designed codes in a tangible environment through Raspberry 
Pi, enhancing not only their understanding but also their appreciation for programming 
concepts, aligning with the tangible learning framework proposed by Marshall (2007). 
To foster collaboration and idea exchange, learners were encouraged to interact and dis-
cuss with one another throughout the activity.

To document each participant’s learning trajectory, cameras were strategically posi-
tioned to capture the learners’ interactions with the hands-on materials essential for 
engagement identification by the RASEDS. Special emphasis was placed on selecting 
camera angles that would vividly showcase both the participants’ hands and the learn-
ing resources involved in the process, as depicted in Fig. 2. Acknowledging the sensitive 
nature of recording minors, we instituted stringent protocols to obtain informed consent 
from each participant or their guardians (for participants under 18) before initiating the 
recording process. This proactive step ensured the ethical handling of visual materials 
featuring the participants’ faces and adhered to responsible research practices. Following 
the workshops, we amassed a total of 4515 images, which were bifurcated into training 
and test datasets at an 80:20 ratio, yielding 3,612 images for the training set and 903 for 
the test dataset. This data will be employed to train the YOLOR model, advancing the 
objectives of this research endeavor.

After the conclusion of the workshop, the students presented their STEM projects 
which were deeply anchored in the field of the Internet of Things (IoT). Leverag-
ing the knowledge they acquired during the workshop regarding sensors and pro-
gramming concepts, the students were tasked with creating innovative solutions to 

Fig. 1 The research workflow
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real-world problems using IoT technologies. Their projects encompassed a range of 
ideas, including smart home solutions, energy-efficient systems, and automation pro-
cesses that facilitate more sustainable living and working environments.

Each project was required to integrate sensor technologies to collect data and to 
use programming concepts to create a functional IoT system. The students utilized 
various sensors to gather data, and applied programming concepts to analyze the data 
and automate responses in the systems they developed. These projects encouraged 
students to think critically and creatively, pushing them to devise solutions that were 
both innovative and technically sound.

After the students presented their projects, they were evaluated by two experts in 
the STEM field. The evaluation process adhered to the criteria outlined in the Crea-
tive Product Analysis Matrix (CPAM) model, which encompassed three dimen-
sions and nine scoring indicators, as detailed in Table 1. Drawing from the expertise 
of Besemer (1998), who verified the effectiveness of the CPAM model in a separate 
study, this evaluation method ensured a comprehensive and meticulous assessment of 
the students’ project.

The scoring was conducted using a five-point Likert scale, a tool that facilitated 
a nuanced understanding of the strengths and weaknesses of each project. The 

Fig. 2 The setting of camera angle

Table 1 Scorer reliability of the CPAM (Besemer, 1998)

* p < 0.05, **p < 0.01, ***p < 0.001

Subscales indicators Scorer reliability

1. Novelty 1.1 Original 0.83***

1.2 Surprising 0.80***

2. Resolution 2.1 Valuable 0.82***

2.2 Logical 0.79***

2.3 Useful 0.68***

2.4 Understandable 0.71***

3. Elaboration & Synthesis 3.1 Organic 0.73***

3.2 Elegant 0.80***

3.3 Well‑Crafted 0.84***
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inter-rater reliability, gauging the level of agreement between the two experts, was 
substantiated by a correlation coefficient ranging between 0.68 and 0.84, pointing to 
a significant level of consensus in the scoring process. This metric not only attested 
to the coherence in the evaluation but also affirmed the credibility of the scores allo-
cated, establishing a reliable foundation for the validation data needed for the STEM 
learning performance prediction model.

Real‑time Automated STEM Engagement Detection System (RASEDS)

To address the highly dynamic and complex nature of learning in STEM activities, we 
developed a system, called Real-time Automated STEM Engagement Detection Sys-
tem (RASEDS) to evaluate the engagement level of learners automatically and instan-
taneously. The architectural diagram of the system is shown in Fig. 3. Initially, RASEDS 
employs object detection technology, specifically YOLOR, to identify both the hands 
of learners and all learning materials used in the activities. The interactions between 
learners’ hands and the learning materials are recognized and serve as a measure of 
the learners’ immediate behaviors. Ultimately, these behaviors are mapped to the ICAP 
framework to assess the engagement level of learners during STEM activities.

YOLOR

In this study, we adopted the YOLOR object detection model proposed by Wang et al. 
(2021) to identify learners’ hands and learning materials. YOLOR is one of the most 
robust models for object detection tasks currently available. It leverages the integration 
of tacit and explicit knowledge to learn universal representations, thereby significantly 
enhancing model performance with one ten-thousandth of the parameters and com-
putational capacity, and executing inference for multiple computer vision tasks (Wang 
et  al., 2021). However, since YOLOR’s pre-trained weights do not include commonly 
used learning materials in STEM activities, we employ Transfer Learning to retrain 
the YOLOR model specifically for identifying learning materials used in STEM activi-
ties. The training parameters used for this purpose are detailed in Table 2. As a result of 
this retraining process, the YOLOR model becomes capable of recognizing six objects 

Fig. 3 The architecture of RASEDS



Page 10 of 26Wu et al. Int J Educ Technol High Educ           (2023) 20:53 

commonly encountered in STEM activities: hand, tablet, laptop, mouse, Raspberry Pi, 
and cellphone.

It should be noted that we seek to understand learners’ current behaviors by identify-
ing the interaction between the learner’s hand and learning materials. Hence, the Inter-
section over Union (IoU) is used as a metric to judge the level of interaction between the 
learner’s hand and the learning material (as Formula 1). IoU is a method for calculating 
overlap regions and is frequently employed to determine the degree of overlap between 
two bounding boxes in object detection tasks. In this study, the IoU threshold was set at 
0.7. If the IoU exceeds 0.7, it indicates an interaction between the learner’s hand and the 
given learning material. Ultimately, the learner’s behaviors can be defined based on this 
interaction with the learning material. For instance, if there is an interaction between the 
learner’s hand and the laptop, it can be inferred that the learner is currently using the 
computer.

ICAP framework

The RASEDS defines the learner’s current behavior by identifying the interaction 
between the learner’s hands and learning materials. As such, different learning behaviors 
are discerned as the learner’s hands interact with various learning materials. By align-
ing the identified learning behaviors with the indicators of the ICAP framework, it is 
possible to clearly understand the learner’s learning engagement and changes in their 
engagement levels. Table 3 provides a comparative chart between the ICAP framework 
and learning behaviors exhibited during STEM activities.

(1)IOU =
Learners′ hand ∩ leaning materials

Learners′ hand ∪ leaning materials

Table 2 The training parameters in YOLOR

Parameter Batch_size Epochs Height Width Class

Value 16 400 640 640 6

Table 3 Relationship between ICAP framework and learning behaviors in STEM education

Indicator Definition Material 
being 
manipulated

Passive
(P)

•  Learners’ hands do not touch objects related to STEM activities

Active
(A)

•  Learners actively operates tablet containing learning materials to solve their 
questions instead of passively receiving knowledge from instructors

•  Tablet

Constructive (C) •  Learners use laptop and mouse to complete project
•  Learners assemble Raspberry Pi components to solve project

•  Laptop
•  Mouse
•  Raspberry Pi

Interactive
(I)

•  Learners assist their peers in solving problems and completing tasks and 
projects

•  Hands

Other
(O)

•  RASEDS fails to recognize learners’ hands
•  Learners use cellphone to do something unrelated to STEM workshop

•  Cellphone
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The setup of RASEDS

To establish RASEDS, we first need to clone and build the YOLOR project as 
described by Wong (2022). We utilized Python 3.9 and PyTorch 1.8.0 with operation 
system Ubuntu 20.04 for development. Additionally, we provide pseudocode to illus-
trate the functionality of RASEDS, which is depicted in Table  4. RASEDS employs 
YOLOR every 5  s to extract the learner’s hand and all learning materials, thereby 
determining the learner’s behavior during STEM activities. Whether the learner’s 
hand interacts with the learning materials depends on whether the IoU value exceeds 
0.7. The ICAP framework is adopted to correlate learning behaviors with engagement. 
RASEDS summarizes the engagement indicators within one minute (i.e., 12 entries), 
and outputs the most frequently occurring engagement indicator within the min-
ute as the learner’s engagement level for the past minute. In the end, each learner’s 
engagement level in the STEM activities is recorded at a frequency of one minute and 
formatted as a.csv file. These records serve as the basis for subsequent adaptive learn-
ing material recommendations.

Table 4 The pseudocode of RASEDS
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Recommendation mechanism for adaptive learning materials in STEM education

In order to provide adaptive learning materials based on learners’ engagement in STEM 
activities, we first established a STEM performance prediction model. This model uses 
the engagement levels identified by RASEDS to predict final learning outcomes. The 
STEM performance prediction model was developed based on data collected from 86 
participants in STEM Workshop: Python and Raspberry Pi Practical Activity. RASEDS 
was used to analyze the participants’ engagement during the workshop, producing per-
centages for each engagement indicators for every learners. These engagement indi-
cators percentages served as independent variables, with the project scores of each 
participant serving as dependent variables, in a multiple linear regression analysis. The 
initial regression formula is shown as Formula 2, where I, C, A, P, and O represent the 
percentages of Interaction, Construction, Active, Passive, and Other indicators, respec-
tively. Here, we need to find a1, a2, a3, a4, a5, and b based on the data from the 86 work-
shop participants.

During data collection, the five independent variables of I, C, A, P, and O were con-
verted into percentages to represent the proportion of each engagement type, hence 
these variables have a linear relationship (i.e., I + C + A + P + O = 100). This necessitates 
the consideration of multicollinearity among the independent variables, requiring the 
use of specialized regression methods. Common regression models for this situation 
include Ridge Regression, Least Absolute Shrinkage and Selection Operator Regression 
(LASSO), and Elastic Net Regression. Ridge Regression mitigates the effects of multi-
collinearity by introducing a penalty term (L2 regularization) in the objective function, 
improving model stability and generalizability. LASSO Regression uses an L1 regulariza-
tion term to conduct feature selection and reduce the impact of multicollinearity. Elas-
tic Net Regression combines the features of Ridge Regression (L2 regularization) and 
LASSO Regression (L1 regularization), overcoming some of the limitations of LASSO 
Regression when dealing with highly correlated features, while retaining feature selec-
tion capabilities. Metrics such as Mean Squared Error (MSE), R-Squared, and Adjusted 
R-Squared were used to evaluate model performance. The results, shown in Table 5, sug-
gest that Elastic Net Regression has the lowest MSE and the highest R-Squared, indicat-
ing the smallest prediction error and the highest model explanatory power. Thus, Elastic 
Net Regression was chosen as the STEM performance prediction model.

By substituting the parameters of the Elastic Net Regression model into Formula 2, we 
obtain Formula 3. Following this, we only need to input the percentage of each engage-
ment indictors from any time period in the classroom into Formula 3 to predict the 

(2)achievement = a1I + a2C + a3A+ a4P + a5O + b

Table 5 The performance of different STEM Performance Prediction Models

MSE R‑Squared Adjusted 
R‑Squared

Ridge Regression 12.05 0.83 0.76

LASSO Regression 12.06 0.83 0.76

Elastic Net Regression 11.67 0.84 0.77
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learner’s performance during that period. As the CPAM is scored using a nine-item five-
point Likert scale, we have chosen a score of 27 (all nine items scored as 3) as the bound-
ary between high and low achievement.

According to the self-efficacy theory proposed by Bandura et al. (1999), learners feel 
more motivated, interested, satisfied, and accomplished when they believe they can 
complete challenging tasks. Conversely, if tasks are too easy or too difficult, learners 
may feel bored, frustrated, or give up. Thus, based on the theory of self-efficacy, we pro-
vide more challenging adaptive learning materials for high-achieving learners and, con-
versely, simpler materials with more annotations for low-achieving learners to facilitate 
easier completion.

Experimental design

Participants

In this study, we enlisted 87 learners from the Department of Engineering Science at a 
university in southern Taiwan, all of whom were taking part in the Networks Embedded 
System and Application course spanning two semesters. Before initiating the study, we 
ensured to obtain informed consent from every participant to record and use videos that 
included their faces for the sole purpose of this research. This step was undertaken to 
adhere to ethical guidelines pertaining to privacy and consent. As described in "STEM 
Workshop: Python and Raspberry Pi Practical Activity" section, none of the learners had 
previously attended the “STEM Workshop: Python and Raspberry Pi Practical Activ-
ity.” The participants were split into two groups: the Control Group (CG) comprising 41 
learners from the first semester, and the Experimental Group (EG) with 46 learners from 
the second semester. The division was designed such that none of the participants were 
aware of the distinct treatments they were set to receive during the study. In the CG, all 
participants utilized a uniform set of learning materials, whereas the EG benefited from 
adaptive learning material recommendations, which were tailored based on individual 
engagement levels to aid in course completion. To ensure a fair experimental setup, a 
single instructor taught both groups and maintained a consistent classroom setting. 
The RASEDS system was employed in both settings to monitor fluctuations in learner 
engagement levels. The pivotal difference between the two groups was in the applica-
tion of the data derived from the RASEDS system; while the CG’s data was collected and 
archived, the EG’s data actively informed adaptive learning material recommendations 
designed to enhance engagement levels.

Procedure

A quasi-experimental design was employed to examine whether adaptive learning mate-
rials recommendation via RASEDS in STEM education helps improve learners’ engage-
ment and self-efficacy. The experimental activities were carried out within the ’Networks 
Embedded System and Application’ course over two semesters. The course was organ-
ized individually, but peer interactions and discussions were permitted during project 
creation. The course, which focuses on IoT and AI, encourages learners to apply their 

(3)
achievement = 1.956 ∗ I + 3.1188 ∗ C − 0.354 ∗ A− 3.500 ∗ P − 1.091 ∗O+ 29.794
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software and hardware knowledge to address real-life problems, thus aligning with the 
core concepts of STEM education (as illustrated in Fig. 4). Each session of the course, 
lasting three hours per week, began with two hours of theoretical instruction and fun-
damental programming principles. These lessons formed the basis for the week’s project 
and ensured a prerequisite comprehension. The remaining hour emphasized practical 
project work, designed to apply and reinforce the principles of STEM.

However, the key distinguishing factor between the EG and CG was the methodol-
ogy adopted for the delivery of learning materials in the final hour of the sessions. In 
the Experimental Group (EG), learning resources were not standardized; instead, they 
were tailored to individual achievement levels determined during the first two hours of 
each session. The principle behind the distribution of adaptive learning materials was as 
follows: after learners completed two hours of coursework, the RASEDS system would 
calculate individual engagement metric percentages for each learner, inputting them 
into Formula 3 to project anticipated achievement levels. Based on these projections, 
teachers would assign more challenging materials to those with scores above 27, and 
vice versa. This approach aims to enhance learning capacity and retain student interest 
by providing materials suited to each learner’s achievement level.

Conversely, the Control Group (CG) adhered to a more traditional approach, where all 
participants received standardized learning materials in the last hour, regardless of their 
individual achievement levels discerned in the initial two-hour period. This approach, 
while simpler, did not allow for the adaptive personalization facilitated in the EG, 
remaining static and neglecting the diverse achievement levels of the participants.

For instance, in week 3 of the course, the topic was "AI Application in IoT". For 
the first two hours, both groups received the same instructional material, covering 
the theoretical concepts of AI and its intersection with IoT, and basic programming 
principles involved in creating AI-based IoT applications. In the final hour, the EG 
received adaptive learning resources. Suppose a participant showed high achieve-
ment during the first two hours, asking questions about advanced AI algorithms for 
IoT. His adaptive learning material for the final hour might include a challenging cod-
ing exercise on implementing a neural network for an IoT device, accompanied by 

Fig. 4 STEM concepts in Networks Embedded System and Application
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resources on best practices and advanced techniques. Meanwhile, another participant 
who struggled with the basic programming principles, would receive material focus-
ing on reinforcing these fundamentals. His material might include a simpler coding 
exercise, along with additional explanations and examples to help solidify her under-
standing of the topic. On the other hand, for the CG, regardless of their individual 
achievement levels or difficulties during the initial two hours, all participants were 
provided with the same material in the final hour. This material was a standard one, 
providing a medium-difficulty coding exercise on implementing a basic AI algorithm 
for IoT, along with some generic resources. It was not tailored to the specific interests 
or struggles of any participant, unlike the adaptive approach employed with the EG. 
These different strategies embody the key divergence between the EG and CG – the 
former group experienced an adaptive, personalized learning approach based on their 
measured achievement levels, while the latter group did not.

The experiment ran for a total of five weeks, and both groups underwent pre- and 
post-tests. These tests measured two critical parameters: engagement and self-effi-
cacy. The tests were conducted at the start of the activity (in the first week) and at the 
end (in the fifth week), as demonstrated in Fig. 5.

Fig. 5 Experimental procedure
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Research tools

The learning engagement questionnaire used in this study was adapted from the Math 
and Science Engagement Scales proposed by Wang et  al. (2016). The questionnaire 
divides engagement into four dimensions: cognitive, behavioral, emotional, and social. 
Cognitive engagement refers to self-regulated learning and the use of necessary cognitive 
strategies to understand complex ideas; behavioral engagement involves engagement in 
academic and classroom activities, the presence of positive behavior, and the absence of 
disruptive behavior. Emotional engagement is defined by the presence of positive emo-
tional responses towards teachers, peers, and classroom activities, as well as interest 
in and value placed on the learning content. Social engagement denotes the quality of 
social interaction with peers and the willingness to establish and maintain relationships 
during the learning process (Wang et  al., 2016). The questionnaire was designed as a 
five-point Likert scale and has been proven to have high reliability and validity in Wang 
et al. (2016). To suit this research, we translated the questionnaire into Chinese and con-
ducted another reliability analysis. Table 6 presents the original and revised reliability of 
the questionnaire. The results show that the revised reliability all exceed 0.7, indicating 
sufficiently high reliability (Nunnally, 1978).

The New General Self-Efficacy Scale proposed by Chen et al. (2001)was used in this 
study. This scale, revised from the General Self-Efficacy Scale by Schwarzer and Jeru-
salem (1995), addresses concerns of low content validity and multidimensionality. Self-
efficacy, as defined by the scale, is the belief in one’s capacity to mobilize motivation, 
cognitive resources, and actions to meet specific situational demands. Essentially, self-
efficacy is akin to confidence, characterized by a learner’s belief in their ability to per-
form effectively within an academic setting. The reliability and validity of this scale were 
previously affirmed by Chen et al. (2001). Based on a five-point Likert scale, this ques-
tionnaire has demonstrated high reliability and validity in prior research. For the pur-
poses of the current study, the scale was translated, followed by an additional reliability 
analysis. The resulting reliability coefficient was 0.88, indicating a high degree of reliabil-
ity, consistent with the standards outlined by Nunnally (1978).

Results
The performance of Real‑time Automated STEM Engagement Detection System (RASEDS)

To understand the performance of RASEDS in identifying the engagement of STEM 
learners, we first employed the confusion matrix, a table used to describe the perfor-
mance of a classification model (or "classifier") on a set of data for which the true val-
ues are known. It presents the true positives, true negatives, false positives, and false 
negatives, allowing for a more detailed analysis of the system’s performance in recog-
nizing various engagement indicators (i.e., I, C, A, P, O). Following this, we calculated 

Table 6 Reliability analysis of engagement scale

Cognitive 
engagement

Behavioral 
engagement

Emotional 
engagement

Social 
engagement

Original reliability 0.75 0.82 0.89 0.74

Revised reliability 0.74 0.84 0.88 0.75
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RASEDS’s precision, recall, and F1 score, metrics derived from the confusion matrix, 
to assess RASEDS’s performance. Here, the precision is the number of true positives 
divided by the number of true positives and false positives, indicating the proportion 
of correctly identified positive observations. The recall, also known as sensitivity or true 
positive rate, is the number of true positives divided by the number of true positives 
and the number of false negatives, showing the ability of the system to find all the posi-
tive samples. The F1 score is the harmonic mean of the precision and recall, where an 
F1 score reaches its best value at 1 (perfect precision and recall) and worst at 0, giving 
a well-rounded view of the model’s accuracy. Due to the current lack of a comparative 
benchmark, we compared the outputs of RASEDS with the encodings of two experts for 
the same data and calculated the Cohen’s kappa value. If the output of RASEDS has a 
high enough consistency with the encodings of the two experts, it means that RASEDS 
has high enough accuracy to replace expert encoding. Moreover, as RASEDS is an auto-
matic and real-time encoding solution, it greatly reduces the time and manpower costs 
of expert encoding.

The results of RASEDS’s confusion matrix are shown in Fig. 6. For model validation, 
we randomly selected 474 one-minute video clips from the learning videos of the con-
trol group, resulting in a total of 474 data points for confusion matrix analysis. The 
reason for using the control group’s learning videos for validation rather than the work-
shop learning videos described in "STEM Workshop: Python and Raspberry Pi Practical 
Activity" section is that RASEDS was trained through the workshop data. Therefore, to 
enhance the credibility of model validation, it is necessary to avoid using the same or 
similar data for validation. As can be seen from Fig.  6, the model did not exhibit any 

Fig. 6 The confusion matrix of RASEDS
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noticeable misjudgments in its recognitions, with only a few possible misjudgments 
caused by angle or obstruction issues affecting RASEDS.

Based on the results of the confusion matrix in Fig.  6, we can calculate the preci-
sion, recall, and F1 score of RASEDS for each engagement level. The results are shown 
in Table 7. The average precision, average recall, and average F1 score of RASEDS are 
0.883, 0.879, and 0.878, respectively.

Given the current lack of a benchmark for comparing the performance of RASEDS, 
we calculated Cohen’s kappa to compare the output of RASEDS and expert encod-
ing. Two experts and RASEDS encoded the same 10 ten-minute learning videos. The 
encoding frequency of the experts was the same as that of RASEDS, with an encoding 
required every minute, resulting in 100 encoding opportunities. The resulting Cohen’s 
kappa between Expert A and Expert B was 0.82, between Expert A and RASEDS was 
0.85, and between Expert B and RASEDS was 0.81, all exceeding 0.70 (Landis & Koch, 
1977). These results indicate that the reliability between raters was sufficiently high; that 
is, there was no difference between expert encoding and RASEDS encoding. Therefore, 
to answer research question 1, RASEDS can effectively and accurately measure learners’ 
engagement, and it can automate encoding while achieving the same accuracy as expert 
encoding, significantly improving the time and manpower costs required by traditional 
observation methods.

The impact of adaptive learning material recommendation via RASEDS on engagement 

in STEM education

To investigate the effect of adaptive learning materials recommendations via RASEDS 
on learners’ engagement in STEM activities, we used ANCOVA analysis. The pre-test 
scores of engagement were used as covariates, and the post-test scores of engagement as 
dependent variables. The homogeneity of variances was assessed using Levene’s test. The 
results indicated homogeneity for cognitive engagement (F = 0.03, p = 0.862), behavio-
ral engagement (F = 2.44, p = 0.122), emotional engagement (F = 0.575, p = 0.450), and 
social engagement (F = 1.17, p = 0.282). Therefore, the results confirmed the robustness 
of variance equality, and ANCOVA was deemed suitable for use.

Descriptive statistics of engagement and ANCOVA analysis results are shown in 
Tables 8 and 9, respectively. As seen in Table 9, there were significant differences in cog-
nitive (F = 21.86, P < 0.001), behavioral (F = 43.5, P < 0.001), and emotional (F = 26.81, 
P < 0.001) engagement between the experimental group and the control group. Further-
more, according to Table 8, the post-test scores of cognitive, behavioral, and emotional 
engagement were significantly higher in the experimental group than in the con-
trol group. Therefore, the results suggest that introducing adaptive learning materials 

Table 7 The performance of RASEDS

Interactive Constructive Active Passive Other Average

Precision 0.867 0.845 0.976 0.918 0.808 0.883

Recall 0.867 0.926 0.82 0.876 0.903 0.879

F1 score 0.867 0.883 0.891 0.897 0.853 0.878
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recommendation via RASEDS in STEM activities can significantly improve learners’ 
engagement, particularly in cognitive, behavioral, and emotional aspects.

The impact of adaptive learning material recommendation via RASEDS on self‑efficacy 

in STEM education

In order to understand the effect of adaptive learning materials recommendations via 
RASEDS on learners’ self-efficacy in STEM activities, we also used ANCOVA analysis. 
The pre-test scores of self-efficacy were used as covariates, and the post-test scores of 
self-efficacy as dependent variables. The homogeneity of variances was assessed using 
Levene’s test. The results indicated homogeneity for self-efficacy (F = 0.05, p = 0.831). 
Therefore, the results confirmed the robustness of variance equality, and ANCOVA was 
again deemed suitable for use.

The descriptive statistics and ANCOVA analysis results of self-efficacy are shown in 
Tables 10 and 11 respectively. As seen in Table 11, there was a significant difference in 
self-efficacy (F = 26.5, P < 0.001) between the experimental group and the control group. 
Furthermore, according to Table  10, the post-test scores of self-efficacy were signifi-
cantly higher in the experimental group than in the control group. Therefore, the results 
suggest that introducing adaptive learning material recommendation via RASEDS in 
STEM activities can significantly improve learners’ self-efficacy.

Table 8 Descriptive results for engagement

EG (N = 46) CG (N = 41)

Pretest Posttest Pretest Posttest

M SD M SD M SD M SD

Cognitive engagement 15.8 2.58 19.8 2.85 15.8 2.68 17.0 2.92

Behavioral engagement 17.8 2.45 18.7 2.63 17.2 1.91 15.5 1.78

Emotional engagement 16.0 2.32 18.8 2.89 15.6 2.62 15.8 3.03

Social engagement 16.1 2.28 17.7 2.24 15.6 2.57 17.2 2.05

Table 9 ANCOVA results for engagement

Bold values represent significant difference
* p < 0.05, **p < 0.01, ***p < 0.001

Variable SS df Mean Square F p Partial η2

Cognitive engagement 171.3 1 171.3 21.86  < 0.001*** 0.206

Behavioral engagement 201.4 1 201.4 43.5  < 0.001*** 0.341

Emotional engagement 214.9 1 214.94 26.81  < 0.001*** 0.242

Social engagement 7.78 1 7.78 1.79 0.185 0.021

Table 10 Descriptive results for self‑efficacy

EG (N = 46) CG (N = 41)

Pretest Posttest Pretest Posttest

M SD M SD M SD M SD

Self‑efficacy 26.6 3.57 30.0 4.57 26.1 5.84 25.3 4.85
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Discussion
Adaptive learning material recommendation via RASEDS in STEM activities

In this study, we propose a system, called Real-time Automated STEM Engagement 
Detection System (RASEDS) for automatically and objectively understanding learners’ 
engagement in STEM activities. Compared with traditional methods of assessing learn-
ers’ engagement in STEM education, such as self-reporting and observation method, 
RASEDS leverages AI and computer vision to measure learners’ engagement in STEM 
education in a standardized and fair manner, potentially overcoming the limitations 
of self-reporting. Furthermore, as an automated system, RASEDS reduces the time 
and labor required for expert coding in observation method. Our findings suggest that 
RASEDS performs excellently in detecting STEM engagement and can achieve identifi-
cation results similar to those of expert coding. RASEDS effectively addresses the lack of 
automated assessment tools for STEM education mentioned in systematic review of Gao 
et al. (2020), providing insights for assessing engagement in STEM education.

On the other hand, most of the current research on adaptive learning is focused on 
e-learning environments because researchers can easily obtain learners’ learning tra-
jectories and develop corresponding adaptive learning mechanisms (El-Sabagh, 2021; 
Premlatha & Geetha, 2015). However, STEM education often involves laboratory activi-
ties and hands-on experiences, making it challenging to develop adaptive learning mech-
anisms in STEM education (Chang & Chen, 2022; Lin et  al., 2021). Therefore, based 
on the engagement results identified by RASEDS, we predict learners’ performance in 
STEM activities and uses this as a basis for recommending adaptive learning materials. 
Ultimately, it provides insights for adaptive learning in STEM education.

The impact of adaptive learning material recommendation via RASEDS on engagement 

in STEM education

In the evolving landscape of STEM education, empowering learners to steer their edu-
cational journey is becoming increasingly pivotal. The shift from a teacher-centered 
approach to a learner-centric paradigm necessitates tools that can facilitate effective 
learner engagement (Fang et al., 2022; Li et al., 2020). This study sought to address this 
gap through the development of RASEDS, a real-time student engagement monitoring 
system equipped with artificial intelligence and data analysis capabilities to recommend 
adaptive learning materials during STEM activities.

Our findings delineated in Tables 8 and 9 validate the efficacy of RASEDS in enhancing 
cognitive, behavioral, and emotional engagement, converging with a burgeoning body 
of literature emphasizing the potential of adaptive learning in fostering knowledge con-
struction (Mou et al., 2022; Xie et al., 2019). RASEDS affords a nuanced understanding 
of learners’ engagement levels, thereby guiding them to materials congruent with their 

Table 11 ANCOVA results for self‑efficacy

Bold values represent significant difference
* p < 0.05, **p < 0.01, ***p < 0.001

Variable SS df Mean Square F p Partial η2

Self‑efficacy 448 1 448 26.5  < 0.001*** 0.240
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learning phase, a strategy echoed in other studies (Sein, 2022). This harmonized learning 
pathway augments cognitive engagement, corroborating earlier research underscoring 
the significance of aligned learning materials in bolstering cognitive strategies (Wu et al., 
2023).

Moreover, the mitigation of learning interruptions encountered during challenging 
phases stands as a testament to RASEDS’ potential in fostering behavioral engagement. 
This resonates with prior works highlighting the role of adaptive learning in sustaining 
students’ zest for learning, thereby preventing early disengagement due to perceived dif-
ficulties (El-Sabagh, 2021; Ross et al., 2018).

Furthermore, the favorable shift in learners’ attitude and emotional response towards 
STEM activities underscore the emotional benefits reaped through adaptive learn-
ing systems like RASEDS. This is buttressed by prior research spotlighting the positive 
repercussions of adaptive learning on learners’ emotions and attitudes (Fatahi, 2019; 
Martin et  al., 2020; Megahed & Mohammed, 2020). Encouragingly, the nurtured pro-
active learning stance fostered by RASEDS finds echoes in studies that advocate for a 
tailored learning approach in reducing frustration and cultivating a positive learning 
ambiance (Amin et al., 2023; Standen et al., 2020).

In conclusion, this study furthers the discourse on the instrumental role of adap-
tive learning systems in advancing STEM education. Through the lens of RASEDS, it 
becomes manifest that real-time engagement monitoring paired with adaptive learning 
material recommendations can be a linchpin in facilitating a holistic learning environ-
ment, nurturing cognitive, behavioral, and emotional engagement. Future studies may 
delve deeper, exploring the multifaceted dimensions of learner engagement to pave the 
way for a richer, more interactive, and learner-centric STEM education landscape.

The impact of adaptive learning material recommendation via RASEDS on self‑efficacy 

in STEM education

Self-efficacy, a term coined by Bandura (1977) and later elaborated on by Bandura and 
Watts (1996), refers to a learner’s belief in their ability to achieve their objectives. This 
concept, which centers around individuals’ confidence and expectations regarding their 
capacities, is particularly pivotal in STEM education where a student-centered approach 
is predominant (Kuchynka et  al., 2021). The self-efficacy demonstrated by students in 
STEM education has a direct bearing on their learning outcomes and their sustained 
interest in participating (Luo et al., 2021). Yet, the intricate nature of STEM subjects can 
sometimes be a double-edged sword, potentially dampening self-efficacy when students 
encounter hurdles, thereby affecting their academic performance (Luo et al., 2021).

To counter this, we propose the utilization of RASEDS, a system designed for the 
real-time monitoring of student engagement, thereby facilitating the recommenda-
tion of adaptive learning materials tailored to individual needs. As reflected in the data 
presented in Tables  10 and 11, leveraging RASEDS significantly amplifies self-efficacy 
during STEM activities. It is vital to emphasize the symbiotic relationship between 
self-efficacy and engagement — a surge in one invariably promotes growth in the 
other. Higher engagement translates to active participation and a deeper comprehen-
sion of the subject matter, subsequently fostering a stronger sense of self-assuredness. 
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This augmentation in self-efficacy corresponds directly to the enhanced engagement 
observed amongst students immersed in STEM tasks (Han et al., 2021; Kuchynka et al., 
2021).

By offering learning materials fine-tuned to suit learners’ aptitudes, RASEDS alleviates 
the challenges posed by potentially overwhelming obstacles, nurturing not only a deeper 
engagement with STEM topics but also fortifying students’ confidence in handling 
STEM tasks, thereby reinforcing self-efficacy. This echoes previous studies that advocate 
for adaptive learning as a means to synergistically bolster confidence and self-efficacy 
through heightened engagement (Graham, 2022; Seon Ahn & Bong, 2019).

In conclusion, although the inherent difficulties of STEM education can pose a 
threat to students’ self-efficacy (Luo et  al., 2021), our study illuminates the rehabilita-
tive power of adaptive learning interventions. RASEDS emerges as a formidable asset in 
this endeavor, fostering a conducive learning ecosystem that encourages confidence and 
fosters self-efficacy. While the results are promising, it remains essential to substantiate 
these initial findings through ongoing research, aiming to deepen our understanding and 
to carve pathways for more nuanced, learner-focused strategies in STEM education.

Conclusion
We aim to develop a system, called Real-time Automated STEM Engagement Detection 
System (RASEDS), based on computer vision and the ICAP framework, and to exam-
ine the impact of adaptive learning material recommendation via RASEDS on students’ 
engagement and self-efficacy in STEM activities. The main findings and contributions of 
this research are as follows:

• RASEDS effectively identifies students’ engagement in STEM activities by recogniz-
ing the interaction between their hand and learning materials (using YOLOR), and 
mapping these to the four modes of the ICAP framework.

• By recommending adaptive learning materials via RASEDS, it can enhance learners’ 
engagement and self-efficacy in STEM activities by providing adaptive support and 
learning materials according to their learning needs and preferences.

We demonstrate the potential of integrating AI technologies and educational theories 
to support adaptive learning in STEM education. It also provides a novel and practi-
cal approach for measuring and enhancing the learning process and outcomes in STEM 
activities. However, this study has some limitations. Firstly, the small sample size of 
participants in the experiment (N = 87) may affect the validity of the statistical analy-
sis. Since RASEDS is based on computer vision technology, the system is limited by the 
camera angle and the problem of occlusion, which leads to misrecognition.

Despite these limitations, we contribute to the literature on adaptive learning in STEM 
education by developing and evaluating a system, called RASEDS based on computer 
vision and the ICAP framework. Future research can verify the causal effect of learners’ 
engagement on self-efficacy through more rigorous experimental designs and apply this 
system to different types of STEM activities and environments to examine its robustness 
and scalability. Furthermore, future work can expand the findings of this study by apply-
ing RASEDS to different STEM fields and contexts, exploring other factors that affect 
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learners’ engagement and self-efficacy, and evaluating the long-term impact of RASEDS 
on students’ STEM literacy and career aspirations.
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