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Introduction
Within early childhood curricula, there is often a focus on encouraging children 
to engage in structured and unstructured play with a variety of toys, tools, and other 
manipulatives (Ashiabi, 2007; Brooker et al., 2014; Smolucha & Smolucha, 2021). In so 
doing, children can learn cause-and-effect, methods to interact with and negotiate play 
with other children and adults, and more sophisticated language. This in turn has an 
outsize contribution to children’s development. Robotics has been used within children’s 
play (e.g., Breazeal et al., 2016; Çetin & Demircan, 2020; Kazakoff & Bers, 2014; Sulli-
van et  al., 2017) as it affords the ability of a teacher to structure children’s play while 
also allowing free exploration on the part of children. To facilitate learning with robot-
ics among young children, it is critical to prepare early childhood teachers to work with 
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and program robots (Bers et al., 2013; Bers, 2018a). Within early childhood education, 
robots are controlled using block-based code, a form of programming that uses blocks 
representing actions of logic that can be assembled to instruct a robot to perform a 
sequence of movements. While block-based programming is assuredly less intimidat-
ing and easier to implement than such text-based programming platforms as C# and 
Python among non-computer science majors, it does require sound programming logic 
and can suffer from bugs (Lye & Koh, 2014). As such, it is critical for early childhood 
teacher candidates to learn to debug, defined as the ill-structured problem-solving pro-
cess in which programmers determine the cause of and resolve a programming error 
(Kim et al., 2018). Debugging activities are often included purposefully in block-based 
programming learning contexts (Kim et al., 2021; Lytle et al., 2019; Neutens & Wyffels, 
2020; Socratous & Ioannou, 2021).

Ill-structured problem solving is often best learned when learners receive scaffold-
ing that structures and problematizes the problem solving process as they engage in the 
problem at hand (Reiser, 2004; Wood et al., 1976). Indeed, meta-analyses have indicated 
that scaffolding has some of the strongest between-subjects and within-subjects effects 
when used to support the learning of computer science concepts and processes (Belland 
et al., 2017a, b). But just as it is critical to examine between-subjects and within-subjects 
effects resulting from the use of scaffolding, it is also critical to examine how learners 
engage in debugging while supported and not supported by scaffolding. Given this gap, 
this study investigated how early childhood education teacher candidates approached 
debugging when provided with debugging scaffolds during block-based programming.

Conceptual framework
The conceptual framework of the present study was constructed based on the literatures 
on teacher learning of programming (Kim et al., 2015, 2018; Bers et al., 2013; Sullivan 
& Moriarty, 2009), scaffolding (Belland et al., 2013; Reiser, 2004; van de Pol et al., 2011), 
and hypothesis-driven debugging (Kim et al., 2018; Katz & Anderson, 1987; McCauley 
et al., 2008; Vessey, 1985; Yoon & Garcia, 1998). Each literature base and the conceptual 
framework are discussed in the following sections that also led to the research question 
of the study.

Teacher learning of programming for computer science for all

It is critical to include computer science in early childhood education (ECE) (Bers, 
2019). This does not mean that all ECE teachers have to be a capable programmer. 
Rather, they need to understand computer science concepts and practice so these can 
be integrated into the existing curricula. There are numerous programming platforms 
that are not as overwhelming as text-based programming platforms (Bers, 2018b; 
Brennan & Resnick, 2013; Lye & Koh, 2014; Näykki et al., 2021; Trilles & Granell, 2020; 
Williams et al., 2019). These platforms are commonly termed block-based program-
ming because they use blocks (i.e., icons with words and/or pictures that represent 
instructions for computers). Furthermore, block-based programming is commonly 
paired with robots or animations that perform the actions represented in the pro-
grammed code. For example, Scratch Jr. is a block-based programming platform that 
can be used by children who are at least 5 years old. Children code in Scratch, Jr. to 
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instruct an animated sprite to perform desired actions. Another example of block-
based programming is Ozoblockly, which can be used to instruct Ozobots (i.e., small 
robots) to perform a set of actions. Ozoblockly also includes pre-reader blocks (level 
1) that make learning of programming unintimidating (see Fig.  1 for an example). 
Despite many available tools and other resources, ECE teacher learning of computer 
science concepts and programming is still limited (c.f., Kim et  al., 2018, 2021; Bers 
et al., 2013; Papadakis & Kalogiannakis, 2019). Where ECE teacher learning of pro-
gramming was pursued, hands-on activities were used for them to experience authen-
tic, block-based programming for teaching children (Kim et al., 2015, 2018; Bers et al., 
2013). Robot programming was often used in ECE teacher learning contexts due to its 
unique affordances from having physical, tangible objects that can facilitate children’s 
dramatic play (Kim et al., 2020).

Scaffolding

Simply inviting learners to address complex problems is not sufficient. Rather, one needs 
to provide scaffolding, which supports learners from cognitive and motivational per-
spectives as they address complex problems (Belland et  al., 2013; Näykki et  al., 2021; 
Wood et al., 1976). Scaffolding can accomplish this by simplifying task elements that are 
not central to learning goals, while drawing attention to task elements that are (Reiser, 
2004). Meta-analyses indicate that scaffolding leads to stronger cognitive learning out-
comes related to STEM than lecture (Belland et al., 2017a, b), and that pre-post gains 

Fig. 1  Example block code at the prereader level making the robot change its movement when its light 
color changes
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were strongest at the college level (Belland et al., 2017a). Scaffolding can take the form of 
question prompts, expert modelling, indicating important things to consider, and prov-
ing feedback (Belland et al., 2013; van de Pol et al., 2011; Wood et al., 1976). Within a 
computer science education context, scaffolding has been used to help students regulate 
their learning (Su, 2020), focus on key project requirements (Demetriadis et al., 2008) 
and to provide feedback in the form of hints to solve the problem (Holland, 2009). Scaf-
folding has a clear role in helping teacher candidates learn to program, but it also can 
play a role in teaching young children to code; the first application of the scaffolding 
metaphor in the context of education was in the context of play in early childhood edu-
cation (Wood et al., 1976). In Wood et al (1976), scaffolding was proposed as the process 
by which adults temporarily support young children as they attempted to build a pyra-
mid with wooden blocks. In teaching children to code, robots or animated sprites are in 
essence the wooden blocks. Rather than building a pyramid by manipulating wooden 
blocks with their hands, children need to manipulate the sprites’ or robots’ actions using 
code. Thus, scaffolding can help teacher candidates learn to debug but can also provide a 
model of productive interactions with children in the future.

Debugging

As mentioned earlier, block-based programming platforms are more inviting than text-
based programming languages to novice programming learners. But block-based pro-
gramming still involves debugging. Debugging is often tiresome and frustrating work, 
but is a natural part of programming (McCauley et  al., 2008; Spinellis, 2018). While 
many computer scientists hold that using a hypothesis-driven approach to debugging 
is best, in reality most professional programmers and computer science instructors 
use unstructured methods (Michaeli & Romeike, 2019; Spinellis, 2018). This is in part 
because debugging is not often a central focus within computer science courses (Spinel-
lis, 2018). Unstructured approaches to debugging are often termed tinkering (Quan & 
Gupta, 2020). Cautious tinkering can be defined as writing and iterating code to solve 
the bug while keeping track of the structure and function of the program (Perkins et al., 
1986). Meanwhile, in haphazard tinkering, changes are often made but not tested, and/
or made in a randomly picked spot in the program to see what happens (Perkins et al., 
1986).

Debugging can serve to formatively assess and scaffold actual learning of novice 
programming learners (Kim et  al., 2018). Especially during pair debugging, the dia-
logue in the pair reveals what they currently know and do not know. Besides, debug-
ging is critical to both computer science and computational thinking education. There 
are some efforts to improve debugging by facilitating structured approaches through 
use of technological tool development such as Whyline (Ko & Myers, 2008), Gidget 
(Lee et al., 2014), Ladebug (Luxton-Reilly et al., 2018), and Visual Studio Code (Del 
Sole, 2019), and also scaffolding design (Ardimento et al., 2019; Ko et al., 2019). How-
ever, there is little research on how to scaffold teacher learning of debugging in higher 
education contexts. Considering that haphazard debugging is often observed among 
ECE teacher candidates with incomplete understanding of what caused bugs and what 
resolved them (Kim et al., 2015, 2018), scaffolding for structured debugging processes 
was expected to be a logical next step.



Page 5 of 26Kim et al. Int J Educ Technol High Educ           (2022) 19:26 	

Study framework

Grounded in the aforementioned literature, the conceptual framework that guided this 
study had three main foci. First, the framework situates ECE teacher learning of pro-
gramming through hands-on robot programming and authentic design for teaching 
children (Kim et al., 2015, 2018; Bers et al., 2013). Thus, the present study invited ECE 
teacher candidates to choreograph robots, and program and use them in their field expe-
rience teaching preschoolers (see details in the methods section). Second, the frame-
work positions scaffolding as a tool to simplify task elements that are not central at the 
moment and draw attention to those that are central (Reiser, 2004). This was done in the 
present study by creating phases from code reading to hypothesis generation, testing, 
and reflection (Fig. 2). Modeling was also used (Belland et al., 2013; Ko et al., 2019; van 
de Pol et al., 2011) by giving example responses to scaffolding prompts. And justifica-
tion was included to promote expectancy for success (Belland et al., 2013) by explaining 
that what they are being asked to do would lead to more successful debugging and why. 
Last, the framework positions hypothesis-driven debugging (Kim et al., 2018; Fitzgerald 
et al., 2008; Vessey, 1985) as an overall approach. Thus, a strategic scaffolding approach 
(Belland 2017; Hannafin et al., 1999) was employed in the present study centered around 
hypothesis generation and testing (Fitzgerald et  al., 2008; McCauley et  al., 2008; Ves-
sey, 1986) (Fig. 2). It also incorporated scaffolding features recommended for reflective 
debugging specifically of block-based code (Kim et al., 2018). The strategies of reading 
before writing (deconstructing before debugging) (Griffin, 2016) was highlighted, and 
why questions (Ko & Myers, 2008) were embedded.

Research question

How do approaches to debugging vary between early childhood teacher candidates who 
were provided debugging scaffolds during block-based programming and those who 
were not?

Method
Setting and participants

Participants were recruited from two sections of a course on integrated arts in early 
childhood education at a large university in the southern region of the USA. The study 
was approved by the university IRB, and participants were read a recruitment script and 
invited to consider and sign an informed consent form. Course section A was provided 

Fig. 2  Scaffolding for hypothesis-driven debugging in the conceptual framework of the present study
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with written debugging scaffolds for hypothesis generation and testing as participants 
debugged code errors, while section B only had verbal instructor support as available. In 
total, 42 ECE teacher candidates participated in the study. In this qualitative case study, 
we focused on 13 participants who were video-recorded. Of these, 11 were females and 
two were males. One participant was Asian, and the others were White. Their mean age 
was 20.46 (SD = 1.01) years. Except for two participants (Jean and Meg) with prior robot 
programming experience, all reported no to little programming knowledge. During 
debugging activities, participants worked in small groups as shown in Table 1. Pseudo-
nyms are used for all participants.

Robot programming unit

The robot programming unit aimed to facilitate participants’ use of robotics technolo-
gies as a medium for communication, inquiry, and engagement among preschoolers. The 
unit consisted of three modules (see Table 2), each with a duration of three hours (i.e., 
one class session). Each module had corresponding learning objectives. Ozobot Bit was 
used for all programming and lesson design activities. Ozobots are programmed using 
a block-based programming platform, Ozoblockly, consisting of five levels that include 
increasingly complex functions (e.g., loops and variables) at the higher levels. Instruc-
tion and practice programming activities initially focused on level 3 (intermediate) and 
progressed to level 4 (advanced) during the second and third modules. Various blocks 
were taught to cover sequential, repetition, and selection control structures.

As described in the conceptual framework earlier, the unit was designed to engage 
participants in authentic programming learning that involved actual teaching in  pre-
schools. Thus, the unit invited participants to design and implement a lesson in pairs 
for preschoolers to engage in dramatic play with robots. Participants were given a sam-
ple lesson in which robots were used in children’s learning of shapes through dramatic 
play in preschool classrooms. Participants learned to code choreographed movements 

Table 1  Team and participants

Course 
section 
(scaffold)

Team Pseudonyms 
(gender)

Age Race Recording Interview Computer 
programming 
knowledge

Prior robot 
programming 
experience

Section A 
(presence)

1 Gwen (F) 20 White Yes Yes None No

Cole (M) 22 White Yes No Low No

2 June (F) 20 White Yes No None No

Kiara (F) 20 White Yes No None No

Grace (F) 20 Asian Yes No None No

3 Diane (F) 21 White Yes Yes None No

Sue (F) 20 White Yes Yes None No

Section B 
(absence)

4 Jean (F) 20 White Yes No Low to none Yes

Meg (F) 23 White Yes No Low to inter-
mediate

Yes

5 Irina (F) 20 White Yes No None No

Todd (M) 20 White Yes No None No

6 Pearl (F) 19 White Yes Yes None No

Gail (F) 21 White Yes Yes Low No
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(Fig. 3) that the robots needed to make in the sample lesson. They also learned to debug 
errors impeding the successful execution of code through three tasks (see Table 3). They 
practiced the lesson and implemented it in their field experience preschool classrooms. 
They then designed a team lesson about a topic of their choice. Next, they worked in 
teams to complete any unfinished debugging tasks. Participants in the course section A 
were provided with scaffolds designed based on the conceptual framework of the pre-
sent study (see the conceptual framework section and Fig. 2). All debugging was done 
collaboratively, but every participant in the scaffolding condition was invited to respond 
to the scaffolding prompts.

Data collection

Data sources included video recordings of debugging work, responses to the debugging 
scaffolds, and semi-structured interviews. In the first week, the study was introduced, 
and participants were invited to consider and sign the informed consent. In the second 
and third weeks, participants’ actions and dialogues along with their computer screens 
were video-recorded while debugging given programming tasks. For participants from 
course section A, responses to scaffolding prompts during the debugging activities were 
also collected. Sample scaffolding prompts included “Restate hypothesis 1”, “Changes 
made to test hypothesis 1”, “Why did you choose to make these changes specifically?”, 
and “What happened after these changes were made?” Following the completion of the 
unit, participants were interviewed for 20–30 min using semi-structured questions.

Data analysis

Qualitative data analysis techniques were used to analyze video and audio transcripts 
from both course sections (see Table 1), and responses to the debugging scaffold used 
in course section A. First, data reduction involved coding using a theoretically-driven 
coding scheme developed based on the conceptual framework (described earlier) and 
refined through multiple rounds of coding. Example nodes and sample data are listed 
in Table 4. We coded data in NVivo 12. A subsample of data sources from each course 
section was assigned so that at least two authors independently coded the same file 

Table 2  A summary of the robot programming unit

Module Summary of activities

1 Introduction to STEAM education using robots

Review of a sample lesson engaging preschoolers in 
learning shapes through dramatic play with Ozobots

Introduction to Ozobot Bit and OzoBlockly level 3

Programming shapes using Ozoblockly level 3

Practice teaching with the sample lesson

2 Lesson implementation reflection

Programming shapes using Ozoblockly level 4

Debugging tasks (with scaffolds in course section A)

Lesson design in teams

Practice teaching with the team lesson

3 Lesson implementation reflection

Debugging tasks (with scaffolds in course section A)
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Fig. 3  Block code used in the sample lesson making the robot move in a circle (left) and a rectangle (right) 
using level 3 (top) and level 4 (lower)

Table 3  Debugging tasks

Debugging tasks Buggy code Debugged code example

Task 1: The code should make the robot 
trace the number, 4, but the code is 
problematic.

Task 2: The code should make the robot 
trace the shape of a lollipop as the 
instructor demonstrates, but the code is 
problematic.

Task 3: Mr. Johnson wants to use robots 
to teach students about colors and 
shapes. He draws two lines: a black line 
with a red end and a black line with a 
blue end. He wants the robot to follow 
the line and trace a square if it senses 
blue or trace two rectangles if it senses 
red. But the code does not work right.
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(Saldaña, 2016; Tracy, 2020). After multiple rounds of coding, three authors indepen-
dently aggregated preliminary findings to generate salient observations supported by 
evidence from coded excerpts (Morse, 1994). Next, two other authors reviewed NVivo 
files and salient observations and discussed coding and coded data with each of the three 
authors individually (Saldaña, 2016). Then, the three authors went through revisions in 
their coding again independently, and one of them finalized all the coding. Finally, quali-
tative themes were crafted jointly (Boyatzis, 1998; Vaismoradi et al., 2016) to subsume 
salient observations that emerged from the data and to describe participants’ debugging 
experiences with or without scaffolds.

Findings and discussion
Theme 1. With scaffolds, participants persisted longer with their efforts

Scaffolds that asked for hypotheses framed the debugging process as part of a hypoth-
esis testing process. Participants were invited to enter three hypotheses. If more were 
needed, more could be added. Thus, when one hypothesis failed to help them with 
debugging, participants persisted to test another hypothesis. The persistence may have 
been enabled by controllability they perceived (Kim & Pekrun, 2014; Weiner, 1985). That 
is, the task of debugging may have been viewed as controllable through hypotheses. Jus-
tification provided in the scaffolding, as described earlier in the conceptual framework, 
may have promoted their persistence. Knowing that what they were asked to do (e.g., 
hypothesis writing and testing) would lead to successful debugging may have sustained 
their engagement. Expectancy for success is a critical factor for engagement (Bandura, 
1997; Wigfield & Eccles, 2000). Diane and Sue (scaffolded group) demonstrated persis-
tent testing of their changes even through multiple failures:

(In this episode, Diane and Sue worked on debugging task 3. They struggled with 
programming the robot to recognize line colors as part of tracing either a square or a 
rectangle.)

Diane: 03:07 So that didn’t work. So now what do I do?
Sue: 03:10 We’re really doing the one today, last time we did how many [tasks] three 
or two?
Diane: 03:45 It’s funny. It’s not even fricking letting me add this (block) now.

Table 4  Sample coding scheme nodes and data

Sample nodes Sample excerpts

Rationale for a comment (suggestion, 
decision), or an action during debug-
ging

“No, look if it’s going that way, that means this wheel is faster. So I slow 
it down and I’ve been slowing it down and it’s been going the same. 
I’ll slow it down to like 10 and see what happens.” (Pearl & Gale, Class 
2 video)

Successful trial-and-error “Bam, you’re out of control. … Yay, it’s working! Like in the world’s 
smallest circle… I mean a square.” (Irina & Meg, Class 2 video)

Unsuccessful trial-and-error “Yeah. Mine literally does nothing… No matter whatever. Nothing...” 
(Diane & Sue, Class 3 video)

Did better than expected “Yeah, I definitely think I did better than any would have expected... I 
wouldn’t have expected that I would be able to program something 
and like identify a problem and fix it type thing.” (Gwen, Interview)
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Sue:03:49 You can’t put it in. You have to do (inaudible) did the equal sign and that’s 
where you put it in.
Diane: 04:00 Oh my gosh. Where do I put those?
Sue: 04:08 Put them up here and then put those that way and then do another one 
navigation line and then do get intersection line and color.
Diane: 04:46 How did you fix it? Like does anybody have problems with that? Do 
you have a recommendation? Because it’s really bad right now.
(…)
Diane: 06:31 I think it’s blinding.
Diane: 06:48 We’re just talking just right. Alrighty. Here we go. Okay, great. It’s mov-
ing in circles here.
Diane: 07:08 You’ve got to take it out there. (Diane told Sue to go test her robot on 
the line the instructor set up for testing)
(…)
Diane:07:42 Yeah. Mine literally does nothing. So that happened to mine too, I 
just... No matter whatever.
Diane:07:52 Nothing changes for me. Nothing. My bot doesn’t work.
(…)
Instructor: 09:27 (To the whole class) So we’ve got some people figuring it out.
Instructor: 09:32 (To Diane) How’s it going? Ok?
Diane: 09:38: Good. Everything’s
Instructor: 09:39 Good? Everything’s alright? Everything’s great? Alright.
Instructor: 09:41 (To Sue) Did we figure it out back there?
Sue:09:43 No.
Instructor: 09:44  A little bit?
Sue: 09:45 It just moves in circles.
Instructor: 09:47 You’re getting there.
Diane: 09:47 So I did that, but shouldn’t it move in a line when I wrote it? So it 
started on the line, alright, let me give it one more try (Diane showed persis-
tence).
Diane: 11:27 Yeah, that happened.
Instructor: 11:35 So right now you guys are just telling it to pick up red, right?
Diane: 13:52 What color is the other one?
Sue: 14:00 I guess I could just use the graph colors….

As shown in the bolded discourse above, Diane and Sue went through unsuccess-
ful cycles of trial and error. For example, Diane even reported that none of their changes 
in the code fixed the problem. She nonetheless told the instructor that everything was 
alright and suggested that her partner, Sue, try another change. Diane and Sue’s process 
of trial-and-error could have disengaged them from debugging, but it did not. It seems 
that multiple changes (and thereby multiple failures on the way) were so natural for them 
to accept as part of hypothesis testing. During the interview, Diane was asked to com-
pare debugging to other real-world problem solving, such as troubleshooting appliances. 
Diane hinted that scaffolded hypothesis testing was helpful, and it reminded her of mul-
tiple rounds of hypothesis testing in scientific experiments and guesses and checks in 
math problem solving, which seems to have contributed to her team’s persistence.
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Diane:17:34 I liked the hypothesis thing. Like why, what do you think needs to hap-
pen and then why did you, why do you think that? And then, what changes you 
would make? Yeah. Changes made.
Diane: 19:33 It kind of, it reminded me of something in science or math, like a guess 
and check almost like, okay, in science you have to come up with [a] hypothesis and 
then you have to test your hypothesis and then if it’s wrong you gotta come back and 
redo it. So more so science than math and then math because it’s like guessing and 
checking on this.

Without centering their debugging process around hypotheses, the participants with-
out scaffolds may have perceived the debugging situation to be uncontrollable. While 
they were asked to reflect on challenges that they had experienced during the process 
of debugging, the participants without scaffolds were not asked to articulate hypotheses 
for causes of bugs and consequences of their changes in the code. Even if they were cog-
nizant of what they were testing, they were not asked to create a formalized hypothesis 
after making changes. The process of testing changes may have felt like one long process 
compared to the scaffolded group who did testing hypothesis by hypothesis. The follow-
ing discourses hint that the participants without the scaffolds desired to avoid their con-
tinuing process of debugging and move onto the next debugging task:

(In this episode, Gail and Pearl worked on debugging task 2. They worked on line 
navigation.)

Gail: 11:10 I’m getting some colored paper (Left her seat).
Pearl: 11:19 How did you do colors?
(…)
Pearl: 12:08  (In a sarcastic tone) You really thought, you really thought you knew 
how to do this. That was your fatal flaw right there.
Gail: 12:18 I just have no clue! (Singing).
Pearl: 12:21 Nope like where is that? How are you doing that?
Pearl: 12:36 Where’s the if?
Gail: 12:37 It’s
Pearl: 12:38 It’s under logic. I think I was just there.
Gail: 12:52 I thought I would bring some fun! (She drew with a pink marker on 
paper rather than debugging).
(…)
Pearl: 13:07  Hey, I’m just deleting this square thing. This entire thing in the 
garbage.
Gail: 13:14 So how do you still have surface colors?
Pearl: 13:17 I just put that one there.
Gail: 13:24 (While drawing lines on a piece of paper with red and blue markers) It 
needs to be red and blue and red and blue. Oh no, I think I just [inaudible] it needs 
to be blue red, blue red.
Pearl:13:44 Why won’t this clip into place? (She said this because blocks did not 
connect)
Gail: 13:49 Like we actually know how to do this (Gail giggles and shakes her hands) 
No, no we don’t.
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Gail 13:53 Those dots may be a little small (referring to dots in the color maze that 
the robot was supposed to trace)
Pearl: 13:53 Gail is not covering those dots (speaking about Gail’s drawing).
Pearl: 13:59 I’m just gonna enjoy myself (avoidance toward debugging).

This episode of Gail and Pearl’s debugging illustrates fragmented inquiries. That is, 
their inquiries about what works or what does not work were not answered because they 
did not follow through the problem that they were seeing at the moment. Rather, they 
simply deleted their problematic code or exhibited little attempt to answer their own 
question as shown above. During the interview, Gail described her team’s debugging 
approach when the robot made unintended or less desired movements as follows: “We 
were just kinda like, I guess this is as good as it’s gonna get.” She explained a rationale as 
follows:

He [the instructor] was telling us about how this is kind of common with the Ozo-
bots. So he was like there’s not too much you can do. You can try to mess with the 
wheel speed, but they’re never going to go like perfectly straight.

These comments hint that Gail and Pearl’s perceived uncontrollability in robot pro-
gramming drove their lack of follow-through. If they were asked to list the changes that 
they made and the reasons for each change in relation to testing a series of hypotheses, 
they may have studied further about their inquires during debugging even when they did 
not aim to perfect their robot movement. In contrast, the why questions to which the 
scaffolded group were invited to respond seemed to help them follow through because 
they were asked to revisit and address inquires related to why some code changes 
worked or not. The important role of both why and why not in debugging in the present 
study is aligned with that in the design of a debugging support tool for text-based pro-
gramming (Ko & Myers, 2008).

Theme 2. Use of scaffolds enabled the instructor to allow struggle during debugging 

without immediate help

The persistence observed in the scaffolded participants may be attributed to the instruc-
tor who allowed struggles in teams rather than providing immediate help. As shown in 
the dialogue below between the instructor and the team of Kiara and June in the class 
with scaffolds, this team continues their work without asking the instructor for help:

(Kiara and June worked on debugging task 1 to fix turn angles and delay between turns 
in the code)

Instructor: 02:47 So you’re going through generating hypotheses and then you’re 
gonna return to those hypotheses. See why they work, why they didn’t, and just make 
some brief notes.
Instructor: 03:12 So as you make changes, just write about them, and work through 
these hypotheses.
Kiara: 03:20 It says it is still a 127-degree angle.
June: 03:20 I don’t know how to do it. Yeah, maybe you do two of them [pause] 
maybe 290.
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Kiara: 03:33 Why?
June: 03:37 okay so you want to keep it 50.
Kiara: 03:41 What do you have to do with the one second?
June: 03:43 Fifteen
Kiara: 03:52 Maybe, if you want to be safe just do one second and load it, I think it 
should be fine now.

Even when participants in the class with scaffolds asked the instructor for help, no 
immediate help was given. As seen in Diane and Sue’s debugging episode below, the 
instructor was asked to help but he rather asked questions back to Sue that made her 
explore and find answers:

Sue: 04:03 How do you decide which colors it is going to see? (She asked the instruc-
tor) I don’t know how to put these colors in the code.
Sue: 04:11 I just don’t understand that.
Instructor: 04:15 Okay. So first we needed to trace to be able to follow a line, how it 
follows a line. So if we go to ... (The instructor waited for Sue to explore the block 
categories on the programming platform) what would tell us to follow a line?
Sue: 04:31 Line navigation
Instructor: 04:32 Cool. Where would you put … Which one would you choose 
first?
Sue: 04:36 The first one?
Instructor: 04:37 Where would we put that?
Sue: 04:39 I think you’d put it at the very beginning.
Instructor: 04:42 Why?
Sue: 04:45 Because it needs to be that first.
Instructor: 04:49 Perfect. So that makes sense.

The instructor’s questioning also seems to prepare the participants to respond to scaf-
folding prompts. For example, his why question about the change that Sue was pro-
posing asked not only her rationale for code changes but also prompted to connect to 
hypothesis generation that was asked in the scaffolding. Considering that the instructor 
explained the task of responding to the scaffolding prompts to the class, he was aware of 
the expected process of problem solving. His awareness may have enabled his approach 
of allowing the participants to take time, struggle without immediate help, and think 
through what they do. This finding is similar to the synergistic effect of written scaf-
folds with teacher classroom enactment found in middle school chemistry classrooms in 
McNeill and Krajcik (2009).

In contrast, struggle did not last long among the participants without scaffolds. Rather, 
the instructor intervened quickly. This was perhaps because participants sought help 
from the instructor immediately when facing difficulties as illustrated below in the 
debugging episode of Jean and Meg:

(In this episode, Meg and Jean debugged the code to make the robot perform different 
actions depending on surface colors during debugging task 3)

Meg: 11:13 I was trying to, I raised my hand earlier but he [the instructor] didn’t see 
it.
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Meg: 11:20 (The instructor came to Meg’s team table) So our question is, we under-
stand how to do it, but these [blocks] won’t attach. (Meg asked about intersection 
color related blocks)
Instructor: 11:27 So I think there is a block you can put in there, though, 
maybe down in logic. Yeah like this one here? Try putting that in there. Okay. 
And then do. Yeah, put that there and then do it. I think there’s a get surface 
color back up in the (The instructor pointed at the block on the programming plat-
form). So you get surface color. You put that in the first part.
Meg: 11:54 Thank you!
Instructor: 11:56 Good deal. And you’ll use it again.
Jean: 11:58 Which one was it again?
Meg: 12:00 I’ll show you in one second.
Jean: 12:03 Well, everything is messed up, I don’t know how to fix it.

As hinted also in the class video below, the instructor in the class without scaffolds 
often gave the answer rather than guiding participants to find the answer themselves. 
This is understandable considering the time and other constraints in the classroom.

(The instructor showed how to code move forward, turn, and delay blocks so to make 
the robot travel on a square path during level 4 practice)

Instructor: 00:07 Okay. It’s definitely it’s turning. So that’s where... Go to the move-
ment. Okay, drag this out here and let’s use that. Get rid of the move and put this in. 
And then after this, put a timing. Bring the seconds down. Instead try setting it for 
about two seconds or three seconds. Maybe three. Okay. Now here’s what’s happen-
ing. This should go straight. You can adjust it to make it go straight and the distance 
it goes is determined by this block. The timing block. Makes sense? So if you don’t 
want it to go as far, back it off to 2.5 or 2. If you want to go further, increase it and 
then play with the rotate and see how that goes. And if you know it’s already turning 
some, you might want to go ahead and say left like 35 or something so that it tries to 
straighten it.

However, providing for meaningful struggle is critical to learning to program and 
debug. As indicated in Gail’s comments in her interview below, Gail did not get to prac-
tice the process of locating bugs when fixing robot wheel speeds and turns because the 
instructor told where Gail’s team should attempt to fix before they began searching for 
the bug location. A search for where the error is in buggy code can be even more difficult 
than fixing the error (McCauley et al., 2008), but Gail lost the opportunity to learn to do 
so.

(Gail described the instructor’s help with fixing wheel speeds and turns)

Interviewer: 08:37 Well, did you review the OzoBlockly code from the top to bot-
tom or from bottom up? Or did you go specifically to the part of the code that you 
thought it was problematic?
Gail: 08:48 With the wheel, I would say we went specifically to the problem. Part 
of that was because the instructor had told us and we had like, we were working in 
class, so we saw some other groups messing with it. So we knew like, oh we should 
mess with the wheel speed.
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The scaffolded group had a plenty of opportunities to search for errors in each debug-
ging phase in the scaffolding (code reading, hypothesis generation, hypothesis testing, 
and reflection; see Fig.  2) but also benefited from strategies for deconstructing before 
debugging (Griffin, 2016). Given that the instructor in the class without scaffolds did 
not know about the debugging scaffolds implemented in the other class, unawareness of 
scaffolding techniques could be associated with instructional approaches to questions in 
class emerged from debugging.

Theme 3: Without scaffolds, participants often engaged in debugging alone

Sole debugging was often observed among participants in the class without scaffolds as 
illustrated in the following episodes from the video data. For example, in the debugging 
episode of Meg and Jean, Meg stated that she was going to show Jean how to debug the 
error when she was done with debugging on her own.

(In this episode, Jean and Meg worked on debugging task 3 to make the robot perform 
different actions depending on surface colors)

Meg: 11:59 I’ll show you in one second. (She continued her debugging attempts 
alone)
Jean: 12:03 Well, everything is messed up, I don’t know how to fix it.
Meg: 12:03 (Meg did not respond to her partner, Jean, but then heard a nearby group 
who was frustrated that their code was not working; Meg then spoke to them) So go 
to logic and the second one down has the equal sign. Put that one with the finding 
if... I’ll show you. It’s probably going to be easier for me to show you.
Meg: 12:30  (Meg showed her computer screen to the student from the neighboring 
group to whom she was talking and continued the debugging task alone)
Meg: 13:17 We could try a variety of different things that the kids just kind of have it 
more like an exploration. Because we only do this during centers. I feel like it should 
be more fun than doing a square. (Meg began discussions with Jean about preschool 
lesson design ideas for their field experience)
Jean:13:37 I think that we should pick people that have letters in their names that 
are easy to write. And then they can do this. Like, we could guide them on how to 
make letters (Meg showed a surprised yet receptive expression).

Everyone was asked to work collaboratively with their partner(s) in all classes but sole 
debugging was often observed in the class without scaffolds. Interestingly, lesson design 
was done collaboratively even in the context in which sole debugging was observed. 
When there was little discussion on how to fix programming errors, as shown above, 
Meg and Jean discussed their preschool lesson design ideas for their field experience. 
The discourse in such lesson design discussions was collective unlike the unidirectional 
discourse in debugging where Meg seemed to play both roles of a navigator and a driver 
(Lewis & Shah, 2015). That is, both contributions of Meg and Jean were made into their 
collaborative lesson design but not in debugging. This may have been because partners in 
a team taught together in their field experience as teaching partners and they perceived 
an equal role and ability in teaching preschoolers in the team as enrolled in the same 
block of their ECE program. Considering that Meg indicated her prior programming 
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knowledge as low to intermediate, she may have calibrated her debugging ability bet-
ter than Jean and her neighboring peer and thought that it would be efficient to debug 
alone. However, sole debugging was often observed among other participants in class 
without scaffolds who had reported no prior programming knowledge. For example, 
Irina, who had indicated no prior programming knowledge, debugged alone as well. As 
seen below, Irina’s partner, Todd, was not invited to her debugging process, similarly to 
the episode of Meg and Jean above in spite that Irina verbalized her thought processes 
loud and clear.

(In this episode, Irina and Todd attempted to debug wheel speed to make the robot 
move straight and forward during level 4 practice)

Irina: 09:04 I can’t tell if it’s leaning any way.
Irina: 09:10 And I mean, can I draw a line or will it start to follow the line? (Irina 
talked to a student in a nearby team; Todd was not part of this conversation; he did 
something on his phone)
Irina: 09:16 It’s leaning a little bit.
Irina: 09:52 Okay. If it’s leaning right, that means the right. I think I should speed up 
the right [wheel]. This is very confusing.
Todd:10:08 (Logged into another computer)
Irina: 11:33 Okay. If it’s, it’s leaning, it’s going way right. That means I need to make 
the right [wheel] faster? Oh.

In contrast, participants in the class with scaffolds often exhibited collaborative debug-
ging. They frequently exchanged questions and ideas and made changes and tested them 
together. The episodes included in Themes 1 and 2 sections also illustrate the observa-
tions between the more collaborative teams of Diane and Sue and Kiara and June and the 
less collaborative teams of Gail and Pearl and Meg and Jean. These contrasting observa-
tions bring into question the role of the scaffolds. Because the participants in the class 
with the scaffolds were asked to write about what they were doing and why as well as 
what they did and what happened as a result, they needed to articulate their debugging 
actions and rationales during debugging. It seemed that they chose to communicate 
about those actions and rationales with their partners as they debugged together, and, in 
consequence, the scaffolding worked to frame the task of debugging collaborative. The 
following episode of Kiara and June who were in the class with scaffolds demonstrates 
the process of collaborative debugging through questioning and hypothesizing elicited 
by the scaffolds. That is, they asked each other questions about what happened and why 
as prompted in the scaffolds.

(In this episode, Kiara and June debugged turn angles and timing during level 4 
practice)

Kiara: 00:51 Wait, wait. What happened?
June: 00:54 Does that make it slower?
Kiara: 01:00 No, we need to make it faster? And it needs to be like 30.
June: 01:09 Why 30?
Kiara: 01:09 Because if we make it 30, it will be like one second.
Kiara: 01:32 Should we change the angle?
June: 01:33 No, I think that’ll be enough. It will be the right ratio.



Page 17 of 26Kim et al. Int J Educ Technol High Educ           (2022) 19:26 	

This process of collaborative reasoning during debugging observed among the partici-
pants with the scaffolds is a critical finding in this study given the importance of collec-
tive understanding in collaborative computing. This finding is critical also because our 
participants are future teachers whose role is crucial in facilitating children’s reasoning 
and collaboration (Saye & Brush, 2002; van de Pol et al., 2015).

Theme 4. Regardless of scaffolds, all participants engaged in trial and error and used 

multimodal cues in embodied debugging

All participants used trial and error regardless of scaffolds. Figure  4 illustrates one 
round of trial and error in one of Jean’s debugging episodes. She tested the code by 
observing her robot’s performance, making another change in the code, and then 
loading the revised code to the robot to test its performance again. She and her part-
ner, Meg, continued through multiple rounds of such trial and error, making incre-
mental changes. The practice of trial and error is often considered unproductive and 
random (Grigoreanu et al., 2006; Ko et al., 2019; Murphy et al., 2008). However, when 
the scaffolded participants engaged in trial and error, they did so to test hypotheses. 
Their hypotheses were more general than specific. Their rationale for changes in the 
code was sometimes unsound but changes were not random. The responses of Kiara 
and June to the debugging scaffold depict intentional and cautious forms of trial and 
error. For example, Kiara hypothesized that the code needed a loop. Her explanation 
for the hypothesis was written in the present tense, which hints that she tried out the 
loop addition and saw its result before or while responding to the prompt about rea-
soning for the hypothesis. That is, each hypothesis involved incremental changes, and 
thus the rounds of hypothesizing and testing were the process of trial and error.

(Kiara’s responses to a section of the debugging scaffold prompts during debugging 
task 1)

Hypothesis 1: Add a loop.
Reason for hypothesis 1: It needs two movements.
Hypothesis 2: Change the angle to 90°.

Fig. 4  Example trial and error during debugging
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Reason for hypothesis 2: 73° was not enough.
Hypothesis 3: Add a movement (rotate).
Reason for hypothesis 3: I need the robot to turn 180° angle. I think adding a 
loop works perfectly.

(June’s responses to a section of the debugging scaffold prompts during debugging 
task 1)

Hypothesis 2: Angles need to be changed.
Changes made to test hypothesis 2: 73° ---> 90° 127° ---> 90° & 90°
Could not be 180°
Why did you choose to make these changes specifically: Because our bot was not 
rotating enough.
What happened after these changes are made: Still was not making full turns. 
Tried different angles until successful (110°) (120° & 100°)

A few researchers argue that there are distinctive forms of trial and error (Kim 
et  al., 2020, 2021;  Fitzgerald et  al., 2010; Perkins et  al., 1986). Considering that the 
scaffolded group eventually noted actual causes of the bugs, trial and error can be 
used in productive ways. This is a critical observation in contrast to the group with-
out scaffolds who often concluded debugging by questioning their instructor about 
the problem in the code, as hinted in the discourse of the team below:

Irina: 08:55 I had tinkered with, I feel like every aspect of it, it’s just like not work-
ing.
Todd: 09:01 Yes.
Irina: 09:02 I still cannot get mine to go in a square correctly and I don’t 
know what I’m doing wrong. I’ll show you. Watch. Okay, so I moved it down 
to just 31 and 30. (She now talked to the instructor to get help)

This may have been because the instructor in the class without scaffolds often pro-
vided immediate help (see Theme 2 above), which made it easier and quicker for the 
participants to ask the instructor to explain why the code was not working than to 
figure it out for themselves. They were not asked to hypothesize why the code was not 
working. During the interview, Gail from the class without scaffolds explained that 
her robot did not move straight but veered left. When asked about the cause of the 
problem, she noted that her team had never figured out how to exactly code wheel 
speeds because of the instructor’s immediate help but also his comments on the tech-
nical limitations of the robots (see the interview quote in Theme 1).

During trial and error, bodily movement was often observed in both classes of partici-
pants regardless of scaffolds. In the following episode of the team from the class without 
scaffolds, Jean assembled blocks in her code and performed hand gestures that simulate 
her robot tracing a circle based on different wheel speeds:

(In this episode, Meg and Jean worked to debug wheel speeds so the robot could make 
a circle as part of debugging task 2)

Jean: 05:48 I’m just gonna wing it.
Meg: 06:58 Oh, the circle is just setting the wheel speeds differently. Like so do one 30 
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and one 60.
Jean: 07:10 How do you know?
Meg: 07:10 Because one will go 60. One’s gonna go faster, it’s gonna like... (Jean per-
formed hand gestures to show that different wheel speeds made the robot travel in a 
circle) 

Participants often engaged in hand drawing while debugging. In the episodes, June 
suggested drawing the pattern the robot traced, Pearl suggested attaching a pen to the 
robot to draw its path, and Irina used curvy hand gestures to show the robot was off the 
desired right angle. In all episodes, participants used or expressed the desire to use mul-
timodal cues to visualize the robot performance, which in turn would inform debugging:

(In this episode, June and Kiara worked to make the robot travel on a square path dur-
ing level 4 practice)

June: 07:40 (She watched the robot’s movement with Kiara) It was so close.
Kiara: 07:40 Let’s draw it, it is hard to tell why. How about we start it in the same 
place every time.

(In this episode, Gail and Pearl worked to debug turn angles to make the robot travel 
on a square path during level 4 practice)

Pearl: 02:23 I need to attach a pencil to it so I can see what shape it makes.
Gail: 02:26 This is a good idea. We should do that. But then it would affect it.

(In this episode, Irina explained to her partner that the robot made right angles during 
level 4 practice)

Irina: 02:22 Now it’s, it’s so off it is not, it goes from a square to a diamond back to a 
square. Like I was it doing like, it’s like the angles are like 180.
Irina: 02:53 Oh okay. Whoa, Whoa, Whoa. That is not a square. I don’t even know 
what that is (laughing).
Irina: 03:13 It is way too far. So he’s going like wooo... (She used curvy hand gestures 
to indicate robot movements that were not 90-degree turns).

The scaffolding design can be improved to include prompts for embodied reasoning 
(Abrahamson et al., 2011) during debugging. Embodied interactions (Fadjo, 2012; Fadjo 
et al., 2008; Romero et al., 2009) could be studied further to benefit embodied learning in 
programming. For example, the debugging scaffold could prompt participants to act out 
as if they were the robots when struggling with angle value in a rotate block to under-
stand the angle of the robot’s actual turn. It may be helpful to integrate strategies using 
embodiment in teaching debugging in unplugged activities (Ahn et al., 2021).

General discussion
Supporting ECE teacher candidates’ ill-structured problem solving during debugging is 
critical, though the literature on scaffolded debugging of block-based code lacks. This 
study reports use of the initial design of a scaffolding prototype in an ECE teacher edu-
cation undergraduate course on integrated arts in early childhood as part of design-
based research. The scaffolding design was grounded in the conceptual framework of the 
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study described earlier. Early childhood teacher candidates in one course section were 
provided the scaffolding prototype, and their counterparts from another section were 
not. Findings are discussed above in each theme, and listed in Table 5, and also discussed 
collectively below.

The scaffolding in the present study seems to have worked as an adaptive motivator in 
that participants persisted more in debugging despite the puzzlement they experienced 
during the process. This may be from the prompts that asked participants to docu-
ment testing multiple hypotheses. Such prompts may have helped participants see their 
struggles as momentary failures—a natural part of hypothesis testing. The debugging 
literature suggests that considering alternative hypotheses is a critical skill for effective 
debugging (Jonassen & Hung, 2006) though novice programmers rarely do so (Lee et al., 
2014; Li et al., 2019; Murphy et al., 2008). The scaffolding may have contributed to the 
perception of hypotheses as malleable statements that can be fine-tuned or discarded, 
which in turn led to participants being flexible in generating alternative hypotheses and 
solutions, and therefore persisting more than participants without scaffolding.

The finding of the scaffolded group’s persistence may be associated also with strug-
gle that the instructor allowed. It was observed that participants without the debug-
ging scaffold quickly looked for external help. The instructor intervened early and 
gave students the answer before they struggled through difficulties. This is decidedly 

Table 5  A summary of findings and possible interpretations related to scaffolding design

Notes. Themes emerged when considering the current data in light of our framework, which was informed by the 
literature. Further detail on the connection between our findings and the literature are discussed in the findings and 
discussion section as well as the general discussion section

Finding Possible attribution to scaffolding design decisions

Persistence through debugging using scaffolds 
(Theme 1)

Strategic scaffolding (Belland et al., 2017a, b; Belland, 
2017; Hannafin et al., 1999) that
• Structured and problematized (Reiser, 2004) the 
debugging process through four-phased debugging 
activities
• Promoted hypothesis-driven debugging (Kim et al., 
2018; Fitzgerald et al., 2008; Vessey, 1985)
• Promoted perceived controllability (Kim & Pekrun, 
2014; Bandura, 1997; Wigfield & Eccles, 2000) enabled 
through alternative hypotheses
• Justified prompted tasks to promote expectancy for 
success (Belland et al., 2013)
• Modeled example responses to scaffolding prompts 
(Belland et al., 2013; Ko et al., 2019; van de Pol et al., 
2011)

Productive struggle facilitated through synergy 
between scaffolds and the instructor (Theme 2)

Scaffolding offered
• Multiple opportunities to search for errors (Kim et al., 
2018)
• Strategies of reading before writing (Griffin, 2016)
• Why and why not questions (Ko & Myers, 2008)

Collaborative reasoning for debugging (Theme 3) Scaffolding provided/promoted
• Question prompts (Belland et al., 2013; van de Pol et al., 
2011)
• Why and why not questions (Ko & Myers, 2008)
• Reflective debugging (Kim et al., 2018)

Trial-and-error and embodied debugging (Theme 4) Scaffolding provided
• No parameter for specificity in hypotheses in scaffolds
• No prompts related to hands-on problem-solving with 
multimodal objects
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not a scaffolding approach, as providing answers directly represents a high level of 
teacher control, and when that is the primary strategy used, it represents a non-con-
tingent form of instructional support (van de Pol et al., 2019). The absence of scaffold-
ing and the instructor’s approach to providing the answer to participants’ questions 
undermined the development of strong debugging skills as learners did not experi-
ence the struggle and productive failure that are inherent to debugging (McCauley 
et  al., 2008; Searle et  al., 2018). These findings are supported by research on ill-
structured productive failure designs, which indicates that those allowed to struggle 
and learn from failure outperform their counterparts who receive direct instruction 
(Kapur, 2015). The findings also align with those of McNeill and Krajcik (2009), who 
found that student learning was optimal when teacher guidance was generic and 
computer-based scaffolds context-specific, as opposed to when teacher guidance was 
context-specific and computer-based scaffolds generic. Furthermore, it can be seen 
that in the condition that used computer-based scaffolds, the support from the scaf-
folds and that of the teacher served together synergistically to support optimal stu-
dent learning (McNeill & Krajcik, 2009; Tabak, 2004). These findings call for further 
studies of in what ways the scaffold facilitates novice debuggers’ persistence and also 
the instructor’s practice that yields productive struggle.

Participants without scaffolds often resorted to individual debugging despite being 
assigned to collaborative teamwork. Contrarily, those who had the scaffolding were 
more inclined to collaboratively work through exchange of ideas and negotiation of 
debugging strategies. Empirical studies suggest that pair programming is an effective 
approach that leads to meaningful learning gains for novice programmers (Kim et al., 
2020, 2021; Denner et al., 2014; Durak et al., 2019; Wei et al., 2021). A meta-analy-
sis of empirical studies on pair versus solo programming found similar results, and 
added that pair programming resulted in enhanced persistence if guidance on pair 
programming is available (Umapathy & Ritzhaupt, 2017). While explicit training on 
programming with a peer was not included in this study, findings suggest that scaf-
folding prompts about hypothesis generation, testing, and reasoning served to some 
extent as guidance for collaborative debugging.

Findings from this study also revealed that, regardless of the scaffolding condition, 
participants in both groups adopted embodied reasoning during debugging. Embodied 
cognition theories assert that one’s bodily interactions with the surrounding environ-
ment are key to their cognitive processes (Anderson, 2003; Shapiro & Stolz, 2019). In 
the present study, participants used hand drawing and hand gestures to make sense of 
and explain robot performance to their peers. Research on embodied debugging is grow-
ing, and empirical results are promising. Ahn et al. (2017) found that exposure to differ-
ent types of embodied cognition was more effective in helping children deal with code 
errors than no exposure at all. Fadjo (2012) found that middle schoolers’ embodiment 
and performance of specific actions prior to programming led to increased use of code 
to program those same actions. Inclusion of scaffolds for embodied reasoning will be 
considered in future redesign of the scaffolding so that ECE teacher candidates can be 
introduced to embodied reasoning strategies during block-based programming practice 
and potentially use such strategies during debugging tasks.
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Another intriguing finding was that hypothesis-driven debugging processes still 
involved much use of trial-and-error among the scaffolded participants. This finding is 
counterintuitive to the perspective in which trial-and-error is viewed as practice out of 
randomness (Grigoreanu et al., 2006; Ko et al., 2019; Murphy et al., 2008). Interestingly, 
participants in the scaffolded group performed trial and error to fine-tune robot move-
ments such as making a turn during the process of testing a hypothesis. Also, the scaf-
folded group often noted the actual cause of the bugs. This may not be too unexpected 
in that the scaffolded participants were asked to write about the actual cause of the bug 
after testing their hypothesized bug. In this sense, these findings showcase productive 
ways of reflective trial and error. Scaffolding prompts specifically on what actually hap-
pened after changes and what actually caused the malfunctioning robot seem to have 
facilitated their noticing of the actual cause for bugs.

Conclusions
This study offers insights into ECE teacher candidates’ experiences with and without 
scaffolds during debugging. The group using the scaffolding prototype experienced 
persistence, productive struggle, and collaborative debugging. Reflective trial and error 
practice was employed as debugging strategies in the scaffolded group. These findings 
inform the redesign of the scaffolding prototype. Findings are not generalizable but give 
insights for diverse debugging approaches which can be applied to the context in which 
computer science  education is pursued for diverse populations including underrepre-
sented groups in computer science.

The current study suggests several areas for future research. As computer science edu-
cation efforts are made nationally and internationally, it is important to consider scaf-
folding the learning-to-code process to groups often unassociated with the computer 
science field. Non-computer science majors should not and cannot be dismissed from 
learning foundational computer science that is  central to digital literacy in the future 
(Bers, 2019). This study provides insight into scaffolding techniques to help ECE teacher 
candidates debug. As advances are made across computing disciplines such as data sci-
ence, cybersecurity, performance computing, and high-performance computing, the 
workforce should be prepared to meet rapid innovation demands. A major sector of this 
workforce are teachers, specifically early childhood teachers. Beginning computer sci-
ence education early is crucial. Therefore scaffolding early childhood teachers to learn 
programming and debugging is crucial as well. This study findings suggest our scaffold-
ing prototype helped with persistence, productive struggle, and collaborative debugging. 
Although further investigation is needed to understand how specific scaffolding tech-
niques promote computer science for all, it is encouraging that early childhood teachers 
are practicing computational literacy.
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