
Debugging behaviors of early childhood
teacher candidates with or without scaffolding
ChanMin Kim1*  , Lucas Vasconcelos2, Brian R. Belland3  , Duygu Umutlu4 and Cory Gleasman5 

Introduction
Within early childhood curricula, there is often a focus on encouraging children
to engage in structured and unstructured play with a variety of toys, tools, and other
manipulatives (Ashiabi, 2007; Brooker et al., 2014; Smolucha & Smolucha, 2021). In so
doing, children can learn cause-and-effect, methods to interact with and negotiate play
with other children and adults, and more sophisticated language. This in turn has an
outsize contribution to children’s development. Robotics has been used within children’s
play (e.g., Breazeal et al., 2016; Çetin & Demircan, 2020; Kazakoff & Bers, 2014; Sulli-
van et al., 2017) as it affords the ability of a teacher to structure children’s play while
also allowing free exploration on the part of children. To facilitate learning with robot-
ics among young children, it is critical to prepare early childhood teachers to work with

Abstract 

It is critical to teach all learners to program and think through programming. But to
do so requires that early childhood teacher candidates learn to teach computer sci-
ence. This in turn requires novel pedagogy that can both help such teachers learn the
needed skills, but also provide a model for their future teaching. In this study, we exam-
ined how early childhood teacher candidates learned to program and debug block-
based code with and without scaffolding. We aimed to see how approaches to debug-
ging vary between early childhood teacher candidates who were provided debugging
scaffolds during block-based programming and those who were not. This qualitative
case study focused on 13 undergraduates majoring in early childhood education.
Data sources included video recording during debugging, semi-structured interviews,
and (in the case of those who used scaffolding) scaffold responses. Research team
members coded data independently and then came to consensus. With hypothesis-
driven scaffolds, participants persisted longer. Use of scaffolds enabled the instructor
to allow struggle without immediate help for participants. Collaborative reasoning
was observed among the scaffolded participants whereas the participants without
scaffolds often debugged alone. Regardless of scaffolds, participants often engaged in
embodied debugging and also used trial and error. This study provides evidence that
one can find success debugging even when engaging in trial and error. This implies
that attempting to prevent trial and error may be counterproductive in some contexts.
Rather, computer science educators may be advised to promote productive struggle.

Keywords:  Teacher learning, Computing education, Debugging, Robot programming

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

RESEARCH ARTICLE

Kim et al. Int J Educ Technol High Educ (2022) 19:26
https://doi.org/10.1186/s41239-022-00319-9

*Correspondence:
cmk604@psu.edu
1 Learning, Design,
and Technology,
Educational Psychology,
College of Education, The
Pennsylvania State University,
314D Keller Building,
University Park, PA 16802,
USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-9383-8846
http://orcid.org/0000-0002-8925-9152
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41239-022-00319-9&domain=pdf

Page 2 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

and program robots (Bers et al., 2013; Bers, 2018a). Within early childhood education,
robots are controlled using block-based code, a form of programming that uses blocks
representing actions of logic that can be assembled to instruct a robot to perform a
sequence of movements. While block-based programming is assuredly less intimidat-
ing and easier to implement than such text-based programming platforms as C# and
Python among non-computer science majors, it does require sound programming logic
and can suffer from bugs (Lye & Koh, 2014). As such, it is critical for early childhood
teacher candidates to learn to debug, defined as the ill-structured problem-solving pro-
cess in which programmers determine the cause of and resolve a programming error
(Kim et al., 2018). Debugging activities are often included purposefully in block-based
programming learning contexts (Kim et al., 2021; Lytle et al., 2019; Neutens & Wyffels,
2020; Socratous & Ioannou, 2021).

Ill-structured problem solving is often best learned when learners receive scaffold-
ing that structures and problematizes the problem solving process as they engage in the
problem at hand (Reiser, 2004; Wood et al., 1976). Indeed, meta-analyses have indicated
that scaffolding has some of the strongest between-subjects and within-subjects effects
when used to support the learning of computer science concepts and processes (Belland
et al., 2017a, b). But just as it is critical to examine between-subjects and within-subjects
effects resulting from the use of scaffolding, it is also critical to examine how learners
engage in debugging while supported and not supported by scaffolding. Given this gap,
this study investigated how early childhood education teacher candidates approached
debugging when provided with debugging scaffolds during block-based programming.

Conceptual framework
The conceptual framework of the present study was constructed based on the literatures
on teacher learning of programming (Kim et al., 2015, 2018; Bers et al., 2013; Sullivan
& Moriarty, 2009), scaffolding (Belland et al., 2013; Reiser, 2004; van de Pol et al., 2011),
and hypothesis-driven debugging (Kim et al., 2018; Katz & Anderson, 1987; McCauley
et al., 2008; Vessey, 1985; Yoon & Garcia, 1998). Each literature base and the conceptual
framework are discussed in the following sections that also led to the research question
of the study.

Teacher learning of programming for computer science for all

It is critical to include computer science in early childhood education (ECE) (Bers,
2019). This does not mean that all ECE teachers have to be a capable programmer.
Rather, they need to understand computer science concepts and practice so these can
be integrated into the existing curricula. There are numerous programming platforms
that are not as overwhelming as text-based programming platforms (Bers, 2018b;
Brennan & Resnick, 2013; Lye & Koh, 2014; Näykki et al., 2021; Trilles & Granell, 2020;
Williams et al., 2019). These platforms are commonly termed block-based program-
ming because they use blocks (i.e., icons with words and/or pictures that represent
instructions for computers). Furthermore, block-based programming is commonly
paired with robots or animations that perform the actions represented in the pro-
grammed code. For example, Scratch Jr. is a block-based programming platform that
can be used by children who are at least 5 years old. Children code in Scratch, Jr. to

Page 3 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

instruct an animated sprite to perform desired actions. Another example of block-
based programming is Ozoblockly, which can be used to instruct Ozobots (i.e., small
robots) to perform a set of actions. Ozoblockly also includes pre-reader blocks (level
1) that make learning of programming unintimidating (see Fig. 1 for an example).
Despite many available tools and other resources, ECE teacher learning of computer
science concepts and programming is still limited (c.f., Kim et al., 2018, 2021; Bers
et al., 2013; Papadakis & Kalogiannakis, 2019). Where ECE teacher learning of pro-
gramming was pursued, hands-on activities were used for them to experience authen-
tic, block-based programming for teaching children (Kim et al., 2015, 2018; Bers et al.,
2013). Robot programming was often used in ECE teacher learning contexts due to its
unique affordances from having physical, tangible objects that can facilitate children’s
dramatic play (Kim et al., 2020).

Scaffolding

Simply inviting learners to address complex problems is not sufficient. Rather, one needs
to provide scaffolding, which supports learners from cognitive and motivational per-
spectives as they address complex problems (Belland et al., 2013; Näykki et al., 2021;
Wood et al., 1976). Scaffolding can accomplish this by simplifying task elements that are
not central to learning goals, while drawing attention to task elements that are (Reiser,
2004). Meta-analyses indicate that scaffolding leads to stronger cognitive learning out-
comes related to STEM than lecture (Belland et al., 2017a, b), and that pre-post gains

Fig. 1  Example block code at the prereader level making the robot change its movement when its light
color changes

Page 4 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

were strongest at the college level (Belland et al., 2017a). Scaffolding can take the form of
question prompts, expert modelling, indicating important things to consider, and prov-
ing feedback (Belland et al., 2013; van de Pol et al., 2011; Wood et al., 1976). Within a
computer science education context, scaffolding has been used to help students regulate
their learning (Su, 2020), focus on key project requirements (Demetriadis et al., 2008)
and to provide feedback in the form of hints to solve the problem (Holland, 2009). Scaf-
folding has a clear role in helping teacher candidates learn to program, but it also can
play a role in teaching young children to code; the first application of the scaffolding
metaphor in the context of education was in the context of play in early childhood edu-
cation (Wood et al., 1976). In Wood et al (1976), scaffolding was proposed as the process
by which adults temporarily support young children as they attempted to build a pyra-
mid with wooden blocks. In teaching children to code, robots or animated sprites are in
essence the wooden blocks. Rather than building a pyramid by manipulating wooden
blocks with their hands, children need to manipulate the sprites’ or robots’ actions using
code. Thus, scaffolding can help teacher candidates learn to debug but can also provide a
model of productive interactions with children in the future.

Debugging

As mentioned earlier, block-based programming platforms are more inviting than text-
based programming languages to novice programming learners. But block-based pro-
gramming still involves debugging. Debugging is often tiresome and frustrating work,
but is a natural part of programming (McCauley et al., 2008; Spinellis, 2018). While
many computer scientists hold that using a hypothesis-driven approach to debugging
is best, in reality most professional programmers and computer science instructors
use unstructured methods (Michaeli & Romeike, 2019; Spinellis, 2018). This is in part
because debugging is not often a central focus within computer science courses (Spinel-
lis, 2018). Unstructured approaches to debugging are often termed tinkering (Quan &
Gupta, 2020). Cautious tinkering can be defined as writing and iterating code to solve
the bug while keeping track of the structure and function of the program (Perkins et al.,
1986). Meanwhile, in haphazard tinkering, changes are often made but not tested, and/
or made in a randomly picked spot in the program to see what happens (Perkins et al.,
1986).

Debugging can serve to formatively assess and scaffold actual learning of novice
programming learners (Kim et al., 2018). Especially during pair debugging, the dia-
logue in the pair reveals what they currently know and do not know. Besides, debug-
ging is critical to both computer science and computational thinking education. There
are some efforts to improve debugging by facilitating structured approaches through
use of technological tool development such as Whyline (Ko & Myers, 2008), Gidget
(Lee et al., 2014), Ladebug (Luxton-Reilly et al., 2018), and Visual Studio Code (Del
Sole, 2019), and also scaffolding design (Ardimento et al., 2019; Ko et al., 2019). How-
ever, there is little research on how to scaffold teacher learning of debugging in higher
education contexts. Considering that haphazard debugging is often observed among
ECE teacher candidates with incomplete understanding of what caused bugs and what
resolved them (Kim et al., 2015, 2018), scaffolding for structured debugging processes
was expected to be a logical next step.

Page 5 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

Study framework

Grounded in the aforementioned literature, the conceptual framework that guided this
study had three main foci. First, the framework situates ECE teacher learning of pro-
gramming through hands-on robot programming and authentic design for teaching
children (Kim et al., 2015, 2018; Bers et al., 2013). Thus, the present study invited ECE
teacher candidates to choreograph robots, and program and use them in their field expe-
rience teaching preschoolers (see details in the methods section). Second, the frame-
work positions scaffolding as a tool to simplify task elements that are not central at the
moment and draw attention to those that are central (Reiser, 2004). This was done in the
present study by creating phases from code reading to hypothesis generation, testing,
and reflection (Fig. 2). Modeling was also used (Belland et al., 2013; Ko et al., 2019; van
de Pol et al., 2011) by giving example responses to scaffolding prompts. And justifica-
tion was included to promote expectancy for success (Belland et al., 2013) by explaining
that what they are being asked to do would lead to more successful debugging and why.
Last, the framework positions hypothesis-driven debugging (Kim et al., 2018; Fitzgerald
et al., 2008; Vessey, 1985) as an overall approach. Thus, a strategic scaffolding approach
(Belland 2017; Hannafin et al., 1999) was employed in the present study centered around
hypothesis generation and testing (Fitzgerald et al., 2008; McCauley et al., 2008; Ves-
sey, 1986) (Fig. 2). It also incorporated scaffolding features recommended for reflective
debugging specifically of block-based code (Kim et al., 2018). The strategies of reading
before writing (deconstructing before debugging) (Griffin, 2016) was highlighted, and
why questions (Ko & Myers, 2008) were embedded.

Research question

How do approaches to debugging vary between early childhood teacher candidates who
were provided debugging scaffolds during block-based programming and those who
were not?

Method
Setting and participants

Participants were recruited from two sections of a course on integrated arts in early
childhood education at a large university in the southern region of the USA. The study
was approved by the university IRB, and participants were read a recruitment script and
invited to consider and sign an informed consent form. Course section A was provided

Fig. 2  Scaffolding for hypothesis-driven debugging in the conceptual framework of the present study

Page 6 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

with written debugging scaffolds for hypothesis generation and testing as participants
debugged code errors, while section B only had verbal instructor support as available. In
total, 42 ECE teacher candidates participated in the study. In this qualitative case study,
we focused on 13 participants who were video-recorded. Of these, 11 were females and
two were males. One participant was Asian, and the others were White. Their mean age
was 20.46 (SD = 1.01) years. Except for two participants (Jean and Meg) with prior robot
programming experience, all reported no to little programming knowledge. During
debugging activities, participants worked in small groups as shown in Table 1. Pseudo-
nyms are used for all participants.

Robot programming unit

The robot programming unit aimed to facilitate participants’ use of robotics technolo-
gies as a medium for communication, inquiry, and engagement among preschoolers. The
unit consisted of three modules (see Table 2), each with a duration of three hours (i.e.,
one class session). Each module had corresponding learning objectives. Ozobot Bit was
used for all programming and lesson design activities. Ozobots are programmed using
a block-based programming platform, Ozoblockly, consisting of five levels that include
increasingly complex functions (e.g., loops and variables) at the higher levels. Instruc-
tion and practice programming activities initially focused on level 3 (intermediate) and
progressed to level 4 (advanced) during the second and third modules. Various blocks
were taught to cover sequential, repetition, and selection control structures.

As described in the conceptual framework earlier, the unit was designed to engage
participants in authentic programming learning that involved actual teaching in pre-
schools. Thus, the unit invited participants to design and implement a lesson in pairs
for preschoolers to engage in dramatic play with robots. Participants were given a sam-
ple lesson in which robots were used in children’s learning of shapes through dramatic
play in preschool classrooms. Participants learned to code choreographed movements

Table 1  Team and participants

Course
section
(scaffold)

Team Pseudonyms
(gender)

Age Race Recording Interview Computer
programming
knowledge

Prior robot
programming
experience

Section A
(presence)

1 Gwen (F) 20 White Yes Yes None No

Cole (M) 22 White Yes No Low No

2 June (F) 20 White Yes No None No

Kiara (F) 20 White Yes No None No

Grace (F) 20 Asian Yes No None No

3 Diane (F) 21 White Yes Yes None No

Sue (F) 20 White Yes Yes None No

Section B
(absence)

4 Jean (F) 20 White Yes No Low to none Yes

Meg (F) 23 White Yes No Low to inter-
mediate

Yes

5 Irina (F) 20 White Yes No None No

Todd (M) 20 White Yes No None No

6 Pearl (F) 19 White Yes Yes None No

Gail (F) 21 White Yes Yes Low No

Page 7 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

(Fig. 3) that the robots needed to make in the sample lesson. They also learned to debug
errors impeding the successful execution of code through three tasks (see Table 3). They
practiced the lesson and implemented it in their field experience preschool classrooms.
They then designed a team lesson about a topic of their choice. Next, they worked in
teams to complete any unfinished debugging tasks. Participants in the course section A
were provided with scaffolds designed based on the conceptual framework of the pre-
sent study (see the conceptual framework section and Fig. 2). All debugging was done
collaboratively, but every participant in the scaffolding condition was invited to respond
to the scaffolding prompts.

Data collection

Data sources included video recordings of debugging work, responses to the debugging
scaffolds, and semi-structured interviews. In the first week, the study was introduced,
and participants were invited to consider and sign the informed consent. In the second
and third weeks, participants’ actions and dialogues along with their computer screens
were video-recorded while debugging given programming tasks. For participants from
course section A, responses to scaffolding prompts during the debugging activities were
also collected. Sample scaffolding prompts included “Restate hypothesis 1”, “Changes
made to test hypothesis 1”, “Why did you choose to make these changes specifically?”,
and “What happened after these changes were made?” Following the completion of the
unit, participants were interviewed for 20–30 min using semi-structured questions.

Data analysis

Qualitative data analysis techniques were used to analyze video and audio transcripts
from both course sections (see Table 1), and responses to the debugging scaffold used
in course section A. First, data reduction involved coding using a theoretically-driven
coding scheme developed based on the conceptual framework (described earlier) and
refined through multiple rounds of coding. Example nodes and sample data are listed
in Table 4. We coded data in NVivo 12. A subsample of data sources from each course
section was assigned so that at least two authors independently coded the same file

Table 2  A summary of the robot programming unit

Module Summary of activities

1 Introduction to STEAM education using robots

Review of a sample lesson engaging preschoolers in
learning shapes through dramatic play with Ozobots

Introduction to Ozobot Bit and OzoBlockly level 3

Programming shapes using Ozoblockly level 3

Practice teaching with the sample lesson

2 Lesson implementation reflection

Programming shapes using Ozoblockly level 4

Debugging tasks (with scaffolds in course section A)

Lesson design in teams

Practice teaching with the team lesson

3 Lesson implementation reflection

Debugging tasks (with scaffolds in course section A)

Page 8 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

Fig. 3  Block code used in the sample lesson making the robot move in a circle (left) and a rectangle (right)
using level 3 (top) and level 4 (lower)

Table 3  Debugging tasks

Debugging tasks Buggy code Debugged code example

Task 1: The code should make the robot
trace the number, 4, but the code is
problematic.

Task 2: The code should make the robot
trace the shape of a lollipop as the
instructor demonstrates, but the code is
problematic.

Task 3: Mr. Johnson wants to use robots
to teach students about colors and
shapes. He draws two lines: a black line
with a red end and a black line with a
blue end. He wants the robot to follow
the line and trace a square if it senses
blue or trace two rectangles if it senses
red. But the code does not work right.

Page 9 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

(Saldaña, 2016; Tracy, 2020). After multiple rounds of coding, three authors indepen-
dently aggregated preliminary findings to generate salient observations supported by
evidence from coded excerpts (Morse, 1994). Next, two other authors reviewed NVivo
files and salient observations and discussed coding and coded data with each of the three
authors individually (Saldaña, 2016). Then, the three authors went through revisions in
their coding again independently, and one of them finalized all the coding. Finally, quali-
tative themes were crafted jointly (Boyatzis, 1998; Vaismoradi et al., 2016) to subsume
salient observations that emerged from the data and to describe participants’ debugging
experiences with or without scaffolds.

Findings and discussion
Theme 1. With scaffolds, participants persisted longer with their efforts

Scaffolds that asked for hypotheses framed the debugging process as part of a hypoth-
esis testing process. Participants were invited to enter three hypotheses. If more were
needed, more could be added. Thus, when one hypothesis failed to help them with
debugging, participants persisted to test another hypothesis. The persistence may have
been enabled by controllability they perceived (Kim & Pekrun, 2014; Weiner, 1985). That
is, the task of debugging may have been viewed as controllable through hypotheses. Jus-
tification provided in the scaffolding, as described earlier in the conceptual framework,
may have promoted their persistence. Knowing that what they were asked to do (e.g.,
hypothesis writing and testing) would lead to successful debugging may have sustained
their engagement. Expectancy for success is a critical factor for engagement (Bandura,
1997; Wigfield & Eccles, 2000). Diane and Sue (scaffolded group) demonstrated persis-
tent testing of their changes even through multiple failures:

(In this episode, Diane and Sue worked on debugging task 3. They struggled with
programming the robot to recognize line colors as part of tracing either a square or a
rectangle.)

Diane: 03:07 So that didn’t work. So now what do I do?
Sue: 03:10 We’re really doing the one today, last time we did how many [tasks] three
or two?
Diane: 03:45 It’s funny. It’s not even fricking letting me add this (block) now.

Table 4  Sample coding scheme nodes and data

Sample nodes Sample excerpts

Rationale for a comment (suggestion,
decision), or an action during debug-
ging

“No, look if it’s going that way, that means this wheel is faster. So I slow
it down and I’ve been slowing it down and it’s been going the same.
I’ll slow it down to like 10 and see what happens.” (Pearl & Gale, Class
2 video)

Successful trial-and-error “Bam, you’re out of control. … Yay, it’s working! Like in the world’s
smallest circle… I mean a square.” (Irina & Meg, Class 2 video)

Unsuccessful trial-and-error “Yeah. Mine literally does nothing… No matter whatever. Nothing...”
(Diane & Sue, Class 3 video)

Did better than expected “Yeah, I definitely think I did better than any would have expected... I
wouldn’t have expected that I would be able to program something
and like identify a problem and fix it type thing.” (Gwen, Interview)

Page 10 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

Sue:03:49 You can’t put it in. You have to do (inaudible) did the equal sign and that’s
where you put it in.
Diane: 04:00 Oh my gosh. Where do I put those?
Sue: 04:08 Put them up here and then put those that way and then do another one
navigation line and then do get intersection line and color.
Diane: 04:46 How did you fix it? Like does anybody have problems with that? Do
you have a recommendation? Because it’s really bad right now.
(…)
Diane: 06:31 I think it’s blinding.
Diane: 06:48 We’re just talking just right. Alrighty. Here we go. Okay, great. It’s mov-
ing in circles here.
Diane: 07:08 You’ve got to take it out there. (Diane told Sue to go test her robot on
the line the instructor set up for testing)
(…)
Diane:07:42 Yeah. Mine literally does nothing. So that happened to mine too, I
just... No matter whatever.
Diane:07:52 Nothing changes for me. Nothing. My bot doesn’t work.
(…)
Instructor: 09:27 (To the whole class) So we’ve got some people figuring it out.
Instructor: 09:32 (To Diane) How’s it going? Ok?
Diane: 09:38: Good. Everything’s
Instructor: 09:39 Good? Everything’s alright? Everything’s great? Alright.
Instructor: 09:41 (To Sue) Did we figure it out back there?
Sue:09:43 No.
Instructor: 09:44 A little bit?
Sue: 09:45 It just moves in circles.
Instructor: 09:47 You’re getting there.
Diane: 09:47 So I did that, but shouldn’t it move in a line when I wrote it? So it
started on the line, alright, let me give it one more try (Diane showed persis-
tence).
Diane: 11:27 Yeah, that happened.
Instructor: 11:35 So right now you guys are just telling it to pick up red, right?
Diane: 13:52 What color is the other one?
Sue: 14:00 I guess I could just use the graph colors….

As shown in the bolded discourse above, Diane and Sue went through unsuccess-
ful cycles of trial and error. For example, Diane even reported that none of their changes
in the code fixed the problem. She nonetheless told the instructor that everything was
alright and suggested that her partner, Sue, try another change. Diane and Sue’s process
of trial-and-error could have disengaged them from debugging, but it did not. It seems
that multiple changes (and thereby multiple failures on the way) were so natural for them
to accept as part of hypothesis testing. During the interview, Diane was asked to com-
pare debugging to other real-world problem solving, such as troubleshooting appliances.
Diane hinted that scaffolded hypothesis testing was helpful, and it reminded her of mul-
tiple rounds of hypothesis testing in scientific experiments and guesses and checks in
math problem solving, which seems to have contributed to her team’s persistence.

Page 11 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

Diane:17:34 I liked the hypothesis thing. Like why, what do you think needs to hap-
pen and then why did you, why do you think that? And then, what changes you
would make? Yeah. Changes made.
Diane: 19:33 It kind of, it reminded me of something in science or math, like a guess
and check almost like, okay, in science you have to come up with [a] hypothesis and
then you have to test your hypothesis and then if it’s wrong you gotta come back and
redo it. So more so science than math and then math because it’s like guessing and
checking on this.

Without centering their debugging process around hypotheses, the participants with-
out scaffolds may have perceived the debugging situation to be uncontrollable. While
they were asked to reflect on challenges that they had experienced during the process
of debugging, the participants without scaffolds were not asked to articulate hypotheses
for causes of bugs and consequences of their changes in the code. Even if they were cog-
nizant of what they were testing, they were not asked to create a formalized hypothesis
after making changes. The process of testing changes may have felt like one long process
compared to the scaffolded group who did testing hypothesis by hypothesis. The follow-
ing discourses hint that the participants without the scaffolds desired to avoid their con-
tinuing process of debugging and move onto the next debugging task:

(In this episode, Gail and Pearl worked on debugging task 2. They worked on line
navigation.)

Gail: 11:10 I’m getting some colored paper (Left her seat).
Pearl: 11:19 How did you do colors?
(…)
Pearl: 12:08 (In a sarcastic tone) You really thought, you really thought you knew
how to do this. That was your fatal flaw right there.
Gail: 12:18 I just have no clue! (Singing).
Pearl: 12:21 Nope like where is that? How are you doing that?
Pearl: 12:36 Where’s the if?
Gail: 12:37 It’s
Pearl: 12:38 It’s under logic. I think I was just there.
Gail: 12:52 I thought I would bring some fun! (She drew with a pink marker on
paper rather than debugging).
(…)
Pearl: 13:07 Hey, I’m just deleting this square thing. This entire thing in the
garbage.
Gail: 13:14 So how do you still have surface colors?
Pearl: 13:17 I just put that one there.
Gail: 13:24 (While drawing lines on a piece of paper with red and blue markers) It
needs to be red and blue and red and blue. Oh no, I think I just [inaudible] it needs
to be blue red, blue red.
Pearl:13:44 Why won’t this clip into place? (She said this because blocks did not
connect)
Gail: 13:49 Like we actually know how to do this (Gail giggles and shakes her hands)
No, no we don’t.

Page 12 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

Gail 13:53 Those dots may be a little small (referring to dots in the color maze that
the robot was supposed to trace)
Pearl: 13:53 Gail is not covering those dots (speaking about Gail’s drawing).
Pearl: 13:59 I’m just gonna enjoy myself (avoidance toward debugging).

This episode of Gail and Pearl’s debugging illustrates fragmented inquiries. That is,
their inquiries about what works or what does not work were not answered because they
did not follow through the problem that they were seeing at the moment. Rather, they
simply deleted their problematic code or exhibited little attempt to answer their own
question as shown above. During the interview, Gail described her team’s debugging
approach when the robot made unintended or less desired movements as follows: “We
were just kinda like, I guess this is as good as it’s gonna get.” She explained a rationale as
follows:

He [the instructor] was telling us about how this is kind of common with the Ozo-
bots. So he was like there’s not too much you can do. You can try to mess with the
wheel speed, but they’re never going to go like perfectly straight.

These comments hint that Gail and Pearl’s perceived uncontrollability in robot pro-
gramming drove their lack of follow-through. If they were asked to list the changes that
they made and the reasons for each change in relation to testing a series of hypotheses,
they may have studied further about their inquires during debugging even when they did
not aim to perfect their robot movement. In contrast, the why questions to which the
scaffolded group were invited to respond seemed to help them follow through because
they were asked to revisit and address inquires related to why some code changes
worked or not. The important role of both why and why not in debugging in the present
study is aligned with that in the design of a debugging support tool for text-based pro-
gramming (Ko & Myers, 2008).

Theme 2. Use of scaffolds enabled the instructor to allow struggle during debugging

without immediate help

The persistence observed in the scaffolded participants may be attributed to the instruc-
tor who allowed struggles in teams rather than providing immediate help. As shown in
the dialogue below between the instructor and the team of Kiara and June in the class
with scaffolds, this team continues their work without asking the instructor for help:

(Kiara and June worked on debugging task 1 to fix turn angles and delay between turns
in the code)

Instructor: 02:47 So you’re going through generating hypotheses and then you’re
gonna return to those hypotheses. See why they work, why they didn’t, and just make
some brief notes.
Instructor: 03:12 So as you make changes, just write about them, and work through
these hypotheses.
Kiara: 03:20 It says it is still a 127-degree angle.
June: 03:20 I don’t know how to do it. Yeah, maybe you do two of them [pause]
maybe 290.

Page 13 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

Kiara: 03:33 Why?
June: 03:37 okay so you want to keep it 50.
Kiara: 03:41 What do you have to do with the one second?
June: 03:43 Fifteen
Kiara: 03:52 Maybe, if you want to be safe just do one second and load it, I think it
should be fine now.

Even when participants in the class with scaffolds asked the instructor for help, no
immediate help was given. As seen in Diane and Sue’s debugging episode below, the
instructor was asked to help but he rather asked questions back to Sue that made her
explore and find answers:

Sue: 04:03 How do you decide which colors it is going to see? (She asked the instruc-
tor) I don’t know how to put these colors in the code.
Sue: 04:11 I just don’t understand that.
Instructor: 04:15 Okay. So first we needed to trace to be able to follow a line, how it
follows a line. So if we go to ... (The instructor waited for Sue to explore the block
categories on the programming platform) what would tell us to follow a line?
Sue: 04:31 Line navigation
Instructor: 04:32 Cool. Where would you put … Which one would you choose
first?
Sue: 04:36 The first one?
Instructor: 04:37 Where would we put that?
Sue: 04:39 I think you’d put it at the very beginning.
Instructor: 04:42 Why?
Sue: 04:45 Because it needs to be that first.
Instructor: 04:49 Perfect. So that makes sense.

The instructor’s questioning also seems to prepare the participants to respond to scaf-
folding prompts. For example, his why question about the change that Sue was pro-
posing asked not only her rationale for code changes but also prompted to connect to
hypothesis generation that was asked in the scaffolding. Considering that the instructor
explained the task of responding to the scaffolding prompts to the class, he was aware of
the expected process of problem solving. His awareness may have enabled his approach
of allowing the participants to take time, struggle without immediate help, and think
through what they do. This finding is similar to the synergistic effect of written scaf-
folds with teacher classroom enactment found in middle school chemistry classrooms in
McNeill and Krajcik (2009).

In contrast, struggle did not last long among the participants without scaffolds. Rather,
the instructor intervened quickly. This was perhaps because participants sought help
from the instructor immediately when facing difficulties as illustrated below in the
debugging episode of Jean and Meg:

(In this episode, Meg and Jean debugged the code to make the robot perform different
actions depending on surface colors during debugging task 3)

Meg: 11:13 I was trying to, I raised my hand earlier but he [the instructor] didn’t see
it.

Page 14 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

Meg: 11:20 (The instructor came to Meg’s team table) So our question is, we under-
stand how to do it, but these [blocks] won’t attach. (Meg asked about intersection
color related blocks)
Instructor: 11:27 So I think there is a block you can put in there, though,
maybe down in logic. Yeah like this one here? Try putting that in there. Okay.
And then do. Yeah, put that there and then do it. I think there’s a get surface
color back up in the (The instructor pointed at the block on the programming plat-
form). So you get surface color. You put that in the first part.
Meg: 11:54 Thank you!
Instructor: 11:56 Good deal. And you’ll use it again.
Jean: 11:58 Which one was it again?
Meg: 12:00 I’ll show you in one second.
Jean: 12:03 Well, everything is messed up, I don’t know how to fix it.

As hinted also in the class video below, the instructor in the class without scaffolds
often gave the answer rather than guiding participants to find the answer themselves.
This is understandable considering the time and other constraints in the classroom.

(The instructor showed how to code move forward, turn, and delay blocks so to make
the robot travel on a square path during level 4 practice)

Instructor: 00:07 Okay. It’s definitely it’s turning. So that’s where... Go to the move-
ment. Okay, drag this out here and let’s use that. Get rid of the move and put this in.
And then after this, put a timing. Bring the seconds down. Instead try setting it for
about two seconds or three seconds. Maybe three. Okay. Now here’s what’s happen-
ing. This should go straight. You can adjust it to make it go straight and the distance
it goes is determined by this block. The timing block. Makes sense? So if you don’t
want it to go as far, back it off to 2.5 or 2. If you want to go further, increase it and
then play with the rotate and see how that goes. And if you know it’s already turning
some, you might want to go ahead and say left like 35 or something so that it tries to
straighten it.

However, providing for meaningful struggle is critical to learning to program and
debug. As indicated in Gail’s comments in her interview below, Gail did not get to prac-
tice the process of locating bugs when fixing robot wheel speeds and turns because the
instructor told where Gail’s team should attempt to fix before they began searching for
the bug location. A search for where the error is in buggy code can be even more difficult
than fixing the error (McCauley et al., 2008), but Gail lost the opportunity to learn to do
so.

(Gail described the instructor’s help with fixing wheel speeds and turns)

Interviewer: 08:37 Well, did you review the OzoBlockly code from the top to bot-
tom or from bottom up? Or did you go specifically to the part of the code that you
thought it was problematic?
Gail: 08:48 With the wheel, I would say we went specifically to the problem. Part
of that was because the instructor had told us and we had like, we were working in
class, so we saw some other groups messing with it. So we knew like, oh we should
mess with the wheel speed.

Page 15 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

The scaffolded group had a plenty of opportunities to search for errors in each debug-
ging phase in the scaffolding (code reading, hypothesis generation, hypothesis testing,
and reflection; see Fig. 2) but also benefited from strategies for deconstructing before
debugging (Griffin, 2016). Given that the instructor in the class without scaffolds did
not know about the debugging scaffolds implemented in the other class, unawareness of
scaffolding techniques could be associated with instructional approaches to questions in
class emerged from debugging.

Theme 3: Without scaffolds, participants often engaged in debugging alone

Sole debugging was often observed among participants in the class without scaffolds as
illustrated in the following episodes from the video data. For example, in the debugging
episode of Meg and Jean, Meg stated that she was going to show Jean how to debug the
error when she was done with debugging on her own.

(In this episode, Jean and Meg worked on debugging task 3 to make the robot perform
different actions depending on surface colors)

Meg: 11:59 I’ll show you in one second. (She continued her debugging attempts
alone)
Jean: 12:03 Well, everything is messed up, I don’t know how to fix it.
Meg: 12:03 (Meg did not respond to her partner, Jean, but then heard a nearby group
who was frustrated that their code was not working; Meg then spoke to them) So go
to logic and the second one down has the equal sign. Put that one with the finding
if... I’ll show you. It’s probably going to be easier for me to show you.
Meg: 12:30 (Meg showed her computer screen to the student from the neighboring
group to whom she was talking and continued the debugging task alone)
Meg: 13:17 We could try a variety of different things that the kids just kind of have it
more like an exploration. Because we only do this during centers. I feel like it should
be more fun than doing a square. (Meg began discussions with Jean about preschool
lesson design ideas for their field experience)
Jean:13:37 I think that we should pick people that have letters in their names that
are easy to write. And then they can do this. Like, we could guide them on how to
make letters (Meg showed a surprised yet receptive expression).

Everyone was asked to work collaboratively with their partner(s) in all classes but sole
debugging was often observed in the class without scaffolds. Interestingly, lesson design
was done collaboratively even in the context in which sole debugging was observed.
When there was little discussion on how to fix programming errors, as shown above,
Meg and Jean discussed their preschool lesson design ideas for their field experience.
The discourse in such lesson design discussions was collective unlike the unidirectional
discourse in debugging where Meg seemed to play both roles of a navigator and a driver
(Lewis & Shah, 2015). That is, both contributions of Meg and Jean were made into their
collaborative lesson design but not in debugging. This may have been because partners in
a team taught together in their field experience as teaching partners and they perceived
an equal role and ability in teaching preschoolers in the team as enrolled in the same
block of their ECE program. Considering that Meg indicated her prior programming

Page 16 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

knowledge as low to intermediate, she may have calibrated her debugging ability bet-
ter than Jean and her neighboring peer and thought that it would be efficient to debug
alone. However, sole debugging was often observed among other participants in class
without scaffolds who had reported no prior programming knowledge. For example,
Irina, who had indicated no prior programming knowledge, debugged alone as well. As
seen below, Irina’s partner, Todd, was not invited to her debugging process, similarly to
the episode of Meg and Jean above in spite that Irina verbalized her thought processes
loud and clear.

(In this episode, Irina and Todd attempted to debug wheel speed to make the robot
move straight and forward during level 4 practice)

Irina: 09:04 I can’t tell if it’s leaning any way.
Irina: 09:10 And I mean, can I draw a line or will it start to follow the line? (Irina
talked to a student in a nearby team; Todd was not part of this conversation; he did
something on his phone)
Irina: 09:16 It’s leaning a little bit.
Irina: 09:52 Okay. If it’s leaning right, that means the right. I think I should speed up
the right [wheel]. This is very confusing.
Todd:10:08 (Logged into another computer)
Irina: 11:33 Okay. If it’s, it’s leaning, it’s going way right. That means I need to make
the right [wheel] faster? Oh.

In contrast, participants in the class with scaffolds often exhibited collaborative debug-
ging. They frequently exchanged questions and ideas and made changes and tested them
together. The episodes included in Themes 1 and 2 sections also illustrate the observa-
tions between the more collaborative teams of Diane and Sue and Kiara and June and the
less collaborative teams of Gail and Pearl and Meg and Jean. These contrasting observa-
tions bring into question the role of the scaffolds. Because the participants in the class
with the scaffolds were asked to write about what they were doing and why as well as
what they did and what happened as a result, they needed to articulate their debugging
actions and rationales during debugging. It seemed that they chose to communicate
about those actions and rationales with their partners as they debugged together, and, in
consequence, the scaffolding worked to frame the task of debugging collaborative. The
following episode of Kiara and June who were in the class with scaffolds demonstrates
the process of collaborative debugging through questioning and hypothesizing elicited
by the scaffolds. That is, they asked each other questions about what happened and why
as prompted in the scaffolds.

(In this episode, Kiara and June debugged turn angles and timing during level 4
practice)

Kiara: 00:51 Wait, wait. What happened?
June: 00:54 Does that make it slower?
Kiara: 01:00 No, we need to make it faster? And it needs to be like 30.
June: 01:09 Why 30?
Kiara: 01:09 Because if we make it 30, it will be like one second.
Kiara: 01:32 Should we change the angle?
June: 01:33 No, I think that’ll be enough. It will be the right ratio.

Page 17 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

This process of collaborative reasoning during debugging observed among the partici-
pants with the scaffolds is a critical finding in this study given the importance of collec-
tive understanding in collaborative computing. This finding is critical also because our
participants are future teachers whose role is crucial in facilitating children’s reasoning
and collaboration (Saye & Brush, 2002; van de Pol et al., 2015).

Theme 4. Regardless of scaffolds, all participants engaged in trial and error and used

multimodal cues in embodied debugging

All participants used trial and error regardless of scaffolds. Figure 4 illustrates one
round of trial and error in one of Jean’s debugging episodes. She tested the code by
observing her robot’s performance, making another change in the code, and then
loading the revised code to the robot to test its performance again. She and her part-
ner, Meg, continued through multiple rounds of such trial and error, making incre-
mental changes. The practice of trial and error is often considered unproductive and
random (Grigoreanu et al., 2006; Ko et al., 2019; Murphy et al., 2008). However, when
the scaffolded participants engaged in trial and error, they did so to test hypotheses.
Their hypotheses were more general than specific. Their rationale for changes in the
code was sometimes unsound but changes were not random. The responses of Kiara
and June to the debugging scaffold depict intentional and cautious forms of trial and
error. For example, Kiara hypothesized that the code needed a loop. Her explanation
for the hypothesis was written in the present tense, which hints that she tried out the
loop addition and saw its result before or while responding to the prompt about rea-
soning for the hypothesis. That is, each hypothesis involved incremental changes, and
thus the rounds of hypothesizing and testing were the process of trial and error.

(Kiara’s responses to a section of the debugging scaffold prompts during debugging
task 1)

Hypothesis 1: Add a loop.
Reason for hypothesis 1: It needs two movements.
Hypothesis 2: Change the angle to 90°.

Fig. 4  Example trial and error during debugging

Page 18 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

Reason for hypothesis 2: 73° was not enough.
Hypothesis 3: Add a movement (rotate).
Reason for hypothesis 3: I need the robot to turn 180° angle. I think adding a
loop works perfectly.

(June’s responses to a section of the debugging scaffold prompts during debugging
task 1)

Hypothesis 2: Angles need to be changed.
Changes made to test hypothesis 2: 73° ---> 90° 127° ---> 90° & 90°
Could not be 180°
Why did you choose to make these changes specifically: Because our bot was not
rotating enough.
What happened after these changes are made: Still was not making full turns.
Tried different angles until successful (110°) (120° & 100°)

A few researchers argue that there are distinctive forms of trial and error (Kim
et al., 2020, 2021; Fitzgerald et al., 2010; Perkins et al., 1986). Considering that the
scaffolded group eventually noted actual causes of the bugs, trial and error can be
used in productive ways. This is a critical observation in contrast to the group with-
out scaffolds who often concluded debugging by questioning their instructor about
the problem in the code, as hinted in the discourse of the team below:

Irina: 08:55 I had tinkered with, I feel like every aspect of it, it’s just like not work-
ing.
Todd: 09:01 Yes.
Irina: 09:02 I still cannot get mine to go in a square correctly and I don’t
know what I’m doing wrong. I’ll show you. Watch. Okay, so I moved it down
to just 31 and 30. (She now talked to the instructor to get help)

This may have been because the instructor in the class without scaffolds often pro-
vided immediate help (see Theme 2 above), which made it easier and quicker for the
participants to ask the instructor to explain why the code was not working than to
figure it out for themselves. They were not asked to hypothesize why the code was not
working. During the interview, Gail from the class without scaffolds explained that
her robot did not move straight but veered left. When asked about the cause of the
problem, she noted that her team had never figured out how to exactly code wheel
speeds because of the instructor’s immediate help but also his comments on the tech-
nical limitations of the robots (see the interview quote in Theme 1).

During trial and error, bodily movement was often observed in both classes of partici-
pants regardless of scaffolds. In the following episode of the team from the class without
scaffolds, Jean assembled blocks in her code and performed hand gestures that simulate
her robot tracing a circle based on different wheel speeds:

(In this episode, Meg and Jean worked to debug wheel speeds so the robot could make
a circle as part of debugging task 2)

Jean: 05:48 I’m just gonna wing it.
Meg: 06:58 Oh, the circle is just setting the wheel speeds differently. Like so do one 30

Page 19 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

and one 60.
Jean: 07:10 How do you know?
Meg: 07:10 Because one will go 60. One’s gonna go faster, it’s gonna like... (Jean per-
formed hand gestures to show that different wheel speeds made the robot travel in a
circle)

Participants often engaged in hand drawing while debugging. In the episodes, June
suggested drawing the pattern the robot traced, Pearl suggested attaching a pen to the
robot to draw its path, and Irina used curvy hand gestures to show the robot was off the
desired right angle. In all episodes, participants used or expressed the desire to use mul-
timodal cues to visualize the robot performance, which in turn would inform debugging:

(In this episode, June and Kiara worked to make the robot travel on a square path dur-
ing level 4 practice)

June: 07:40 (She watched the robot’s movement with Kiara) It was so close.
Kiara: 07:40 Let’s draw it, it is hard to tell why. How about we start it in the same
place every time.

(In this episode, Gail and Pearl worked to debug turn angles to make the robot travel
on a square path during level 4 practice)

Pearl: 02:23 I need to attach a pencil to it so I can see what shape it makes.
Gail: 02:26 This is a good idea. We should do that. But then it would affect it.

(In this episode, Irina explained to her partner that the robot made right angles during
level 4 practice)

Irina: 02:22 Now it’s, it’s so off it is not, it goes from a square to a diamond back to a
square. Like I was it doing like, it’s like the angles are like 180.
Irina: 02:53 Oh okay. Whoa, Whoa, Whoa. That is not a square. I don’t even know
what that is (laughing).
Irina: 03:13 It is way too far. So he’s going like wooo... (She used curvy hand gestures
to indicate robot movements that were not 90-degree turns).

The scaffolding design can be improved to include prompts for embodied reasoning
(Abrahamson et al., 2011) during debugging. Embodied interactions (Fadjo, 2012; Fadjo
et al., 2008; Romero et al., 2009) could be studied further to benefit embodied learning in
programming. For example, the debugging scaffold could prompt participants to act out
as if they were the robots when struggling with angle value in a rotate block to under-
stand the angle of the robot’s actual turn. It may be helpful to integrate strategies using
embodiment in teaching debugging in unplugged activities (Ahn et al., 2021).

General discussion
Supporting ECE teacher candidates’ ill-structured problem solving during debugging is
critical, though the literature on scaffolded debugging of block-based code lacks. This
study reports use of the initial design of a scaffolding prototype in an ECE teacher edu-
cation undergraduate course on integrated arts in early childhood as part of design-
based research. The scaffolding design was grounded in the conceptual framework of the

Page 20 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

study described earlier. Early childhood teacher candidates in one course section were
provided the scaffolding prototype, and their counterparts from another section were
not. Findings are discussed above in each theme, and listed in Table 5, and also discussed
collectively below.

The scaffolding in the present study seems to have worked as an adaptive motivator in
that participants persisted more in debugging despite the puzzlement they experienced
during the process. This may be from the prompts that asked participants to docu-
ment testing multiple hypotheses. Such prompts may have helped participants see their
struggles as momentary failures—a natural part of hypothesis testing. The debugging
literature suggests that considering alternative hypotheses is a critical skill for effective
debugging (Jonassen & Hung, 2006) though novice programmers rarely do so (Lee et al.,
2014; Li et al., 2019; Murphy et al., 2008). The scaffolding may have contributed to the
perception of hypotheses as malleable statements that can be fine-tuned or discarded,
which in turn led to participants being flexible in generating alternative hypotheses and
solutions, and therefore persisting more than participants without scaffolding.

The finding of the scaffolded group’s persistence may be associated also with strug-
gle that the instructor allowed. It was observed that participants without the debug-
ging scaffold quickly looked for external help. The instructor intervened early and
gave students the answer before they struggled through difficulties. This is decidedly

Table 5  A summary of findings and possible interpretations related to scaffolding design

Notes. Themes emerged when considering the current data in light of our framework, which was informed by the
literature. Further detail on the connection between our findings and the literature are discussed in the findings and
discussion section as well as the general discussion section

Finding Possible attribution to scaffolding design decisions

Persistence through debugging using scaffolds
(Theme 1)

Strategic scaffolding (Belland et al., 2017a, b; Belland,
2017; Hannafin et al., 1999) that
• Structured and problematized (Reiser, 2004) the
debugging process through four-phased debugging
activities
• Promoted hypothesis-driven debugging (Kim et al.,
2018; Fitzgerald et al., 2008; Vessey, 1985)
• Promoted perceived controllability (Kim & Pekrun,
2014; Bandura, 1997; Wigfield & Eccles, 2000) enabled
through alternative hypotheses
• Justified prompted tasks to promote expectancy for
success (Belland et al., 2013)
• Modeled example responses to scaffolding prompts
(Belland et al., 2013; Ko et al., 2019; van de Pol et al.,
2011)

Productive struggle facilitated through synergy
between scaffolds and the instructor (Theme 2)

Scaffolding offered
• Multiple opportunities to search for errors (Kim et al.,
2018)
• Strategies of reading before writing (Griffin, 2016)
• Why and why not questions (Ko & Myers, 2008)

Collaborative reasoning for debugging (Theme 3) Scaffolding provided/promoted
• Question prompts (Belland et al., 2013; van de Pol et al.,
2011)
• Why and why not questions (Ko & Myers, 2008)
• Reflective debugging (Kim et al., 2018)

Trial-and-error and embodied debugging (Theme 4) Scaffolding provided
• No parameter for specificity in hypotheses in scaffolds
• No prompts related to hands-on problem-solving with
multimodal objects

Page 21 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

not a scaffolding approach, as providing answers directly represents a high level of
teacher control, and when that is the primary strategy used, it represents a non-con-
tingent form of instructional support (van de Pol et al., 2019). The absence of scaffold-
ing and the instructor’s approach to providing the answer to participants’ questions
undermined the development of strong debugging skills as learners did not experi-
ence the struggle and productive failure that are inherent to debugging (McCauley
et al., 2008; Searle et al., 2018). These findings are supported by research on ill-
structured productive failure designs, which indicates that those allowed to struggle
and learn from failure outperform their counterparts who receive direct instruction
(Kapur, 2015). The findings also align with those of McNeill and Krajcik (2009), who
found that student learning was optimal when teacher guidance was generic and
computer-based scaffolds context-specific, as opposed to when teacher guidance was
context-specific and computer-based scaffolds generic. Furthermore, it can be seen
that in the condition that used computer-based scaffolds, the support from the scaf-
folds and that of the teacher served together synergistically to support optimal stu-
dent learning (McNeill & Krajcik, 2009; Tabak, 2004). These findings call for further
studies of in what ways the scaffold facilitates novice debuggers’ persistence and also
the instructor’s practice that yields productive struggle.

Participants without scaffolds often resorted to individual debugging despite being
assigned to collaborative teamwork. Contrarily, those who had the scaffolding were
more inclined to collaboratively work through exchange of ideas and negotiation of
debugging strategies. Empirical studies suggest that pair programming is an effective
approach that leads to meaningful learning gains for novice programmers (Kim et al.,
2020, 2021; Denner et al., 2014; Durak et al., 2019; Wei et al., 2021). A meta-analy-
sis of empirical studies on pair versus solo programming found similar results, and
added that pair programming resulted in enhanced persistence if guidance on pair
programming is available (Umapathy & Ritzhaupt, 2017). While explicit training on
programming with a peer was not included in this study, findings suggest that scaf-
folding prompts about hypothesis generation, testing, and reasoning served to some
extent as guidance for collaborative debugging.

Findings from this study also revealed that, regardless of the scaffolding condition,
participants in both groups adopted embodied reasoning during debugging. Embodied
cognition theories assert that one’s bodily interactions with the surrounding environ-
ment are key to their cognitive processes (Anderson, 2003; Shapiro & Stolz, 2019). In
the present study, participants used hand drawing and hand gestures to make sense of
and explain robot performance to their peers. Research on embodied debugging is grow-
ing, and empirical results are promising. Ahn et al. (2017) found that exposure to differ-
ent types of embodied cognition was more effective in helping children deal with code
errors than no exposure at all. Fadjo (2012) found that middle schoolers’ embodiment
and performance of specific actions prior to programming led to increased use of code
to program those same actions. Inclusion of scaffolds for embodied reasoning will be
considered in future redesign of the scaffolding so that ECE teacher candidates can be
introduced to embodied reasoning strategies during block-based programming practice
and potentially use such strategies during debugging tasks.

Page 22 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

Another intriguing finding was that hypothesis-driven debugging processes still
involved much use of trial-and-error among the scaffolded participants. This finding is
counterintuitive to the perspective in which trial-and-error is viewed as practice out of
randomness (Grigoreanu et al., 2006; Ko et al., 2019; Murphy et al., 2008). Interestingly,
participants in the scaffolded group performed trial and error to fine-tune robot move-
ments such as making a turn during the process of testing a hypothesis. Also, the scaf-
folded group often noted the actual cause of the bugs. This may not be too unexpected
in that the scaffolded participants were asked to write about the actual cause of the bug
after testing their hypothesized bug. In this sense, these findings showcase productive
ways of reflective trial and error. Scaffolding prompts specifically on what actually hap-
pened after changes and what actually caused the malfunctioning robot seem to have
facilitated their noticing of the actual cause for bugs.

Conclusions
This study offers insights into ECE teacher candidates’ experiences with and without
scaffolds during debugging. The group using the scaffolding prototype experienced
persistence, productive struggle, and collaborative debugging. Reflective trial and error
practice was employed as debugging strategies in the scaffolded group. These findings
inform the redesign of the scaffolding prototype. Findings are not generalizable but give
insights for diverse debugging approaches which can be applied to the context in which
computer science education is pursued for diverse populations including underrepre-
sented groups in computer science.

The current study suggests several areas for future research. As computer science edu-
cation efforts are made nationally and internationally, it is important to consider scaf-
folding the learning-to-code process to groups often unassociated with the computer
science field. Non-computer science majors should not and cannot be dismissed from
learning foundational computer science that is central to digital literacy in the future
(Bers, 2019). This study provides insight into scaffolding techniques to help ECE teacher
candidates debug. As advances are made across computing disciplines such as data sci-
ence, cybersecurity, performance computing, and high-performance computing, the
workforce should be prepared to meet rapid innovation demands. A major sector of this
workforce are teachers, specifically early childhood teachers. Beginning computer sci-
ence education early is crucial. Therefore scaffolding early childhood teachers to learn
programming and debugging is crucial as well. This study findings suggest our scaffold-
ing prototype helped with persistence, productive struggle, and collaborative debugging.
Although further investigation is needed to understand how specific scaffolding tech-
niques promote computer science for all, it is encouraging that early childhood teachers
are practicing computational literacy.
Acknowledgements
Not applicable.

Authors’ contributions
CK and BRB planned the study, secured the funding, collected data, analyzed the data, and wrote up the manuscript. LV,
DU, and CG assisted CK and BRB with data collection and analysis. All five authors contributed to writing. The authorship
order is in the order from the most to the least contributions. All authors read and approved the final manuscript.

Page 23 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

Funding
This work has been supported by grants 1927595 and 1906059 from the National Science Foundation (NSF) in the
United States. Any opinions, findings, and or conclusions are those of the authors and do not necessarily represent
official positions of NSF.

Availability of data and materials
The instructional material is available upon request to the first author. The data of the video-recorded participants can-
not be shared openly because they cannot be anonymized completely.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 Learning, Design, and Technology, Educational Psychology, College of Education, The Pennsylvania State University,
314D Keller Building, University Park, PA 16802, USA. 2 Educational Studies, College of Education, University of South Caro-
lina, Columbia, USA. 3 Educational Psychology, College of Education, The Pennsylvania State University, University Park, PA,
USA. 4 Computer Education and Educational Technology, Boğaziçi University, Istanbul, Turkey. 5 Department of Curriculum
and Instruction, College of Education, Tennessee Tech University, Cookeville, USA.

Received: 8 July 2021 Accepted: 10 January 2022

References
Abrahamson, D., Trninic, D., Gutiérrez, J. F., Huth, J., & Lee, R. G. (2011). Hooks and shifts: A dialectical study of mediated

discovery. Technology, Knowledge and Learning, 16(1), 55–85. https://​doi.​org/​10.​1007/​s10758-​011-​9177-y
Ahn, J., Mao, Y., Sung, W., & Black, J. B. (2017). Supporting debugging skills: Using embodied instructions in children’s

programming education. In Proceedings of Society for Information Technology & Teacher Education International Con-
ference (pp. 19–26). Association for the Advancement of Computing in Education (AACE).

Ahn, J., Sung, W., & Black, J. B. (2021). Unplugged debugging activities for developing young learners’ debugging skills.
Journal of Research in Childhood Education. https://​doi.​org/​10.​1080/​02568​543.​2021.​19815​03

Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, 149(1), 91–130. https://​doi.​org/​10.​1016/​
S0004-​3702(03)​00054-7

Ardimento, P., Bernardi, M. L., Cimitile, M., & Ruvo, G. D. (2019). Reusing bugged source code to support novice program-
mers in debugging. ACM Transactions on Computing Education, 20(1), 1–24. https://​doi.​org/​10.​1145/​33556​16

Ashiabi, G. S. (2007). Play in the preschool classroom: Its socioemotional significance and the teacher’s role in play. Early
Childhood Education Journal, 35(2), 199–207. https://​doi.​org/​10.​1007/​s10643-​007-​0165-8

Bandura, A. (1997). Self-efficacy: The exercise of control (pp. ix, 604). W H Freeman/Times Books/ Henry Holt & Co.
Belland, B. R. (2017). Instructional scaffolding in STEM education. Springer International Publishing. https://​doi.​org/​10.​

1007/​978-3-​319-​02565-0.
Belland, B. R., Kim, C., & Hannafin, M. J. (2013). A framework for designing scaffolds that improve motivation and cogni-

tion. Educational Psychologist, 48(4), 243–270. https://​doi.​org/​10.​1080/​00461​520.​2013.​838920.
Belland, B. R., Walker, A. E., & Kim, N. J. (2017a). A Bayesian network meta-analysis to synthesize the influence of contexts

of scaffolding use on cognitive outcomes in stem education. Review of Educational Research, 87(6), 1042–1081.
https://​doi.​org/​10.​3102/​00346​54317​723009.

Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017b). Synthesizing results from empirical research on computer-based
scaffolding in STEM education: A meta-analysis. Review of Educational Research, 87(2), 309–344. https://​doi.​org/​10.​
3102/​00346​54316​670999.

Bers, M. U. (2018a). Coding as a playground: Programming and computational thinking in the early childhood classroom.
Routledge, Taylor & Francis Group.

Bers, M. U. (2018b). Coding, playgrounds and literacy in early childhood education: The development of KIBO robotics
and ScratchJr. IEEE Global Engineering Education Conference (EDUCON), 2018, 2094–2102. https://​doi.​org/​10.​1109/​
EDUCON.​2018.​83634​98

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer science in early child-
hood. Journal of Computers in Education, 6(4), 499–528. https://​doi.​org/​10.​1007/​s40692-​019-​00147-3

Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early child-
hood teacher education. Journal of Technology and Teacher Education, 21(3), 355–377.

Boyatzis, R. E. (1998). Transforming qualitative information: Thematic analysis and code development. Sage.
Breazeal, C., Harris, P. L., DeSteno, D., Kory Westlund, J. M., Dickens, L., & Jeong, S. (2016). Young children treat robots as

informants. Topics in Cognitive Science, 8(2), 481–491. https://​doi.​org/​10.​1111/​tops.​12192
Brennan, K., & Resnick, M. (2013). Imagining, creating, playing, sharing, reflecting: How online community supports young

people as designers of interactive media. In C. Mouza & N. Lavigne (Eds.), Emerging technologies for the classroom
(pp. 253–268). Springer, New York. https://​doi.​org/​10.​1007/​978-1-​4614-​4696-5_​17

Brooker, E., Blaise, M., & Edwards, S. (Eds.). (2014). SAGE handbook of play and learning in early childhood. SAGE.
Çetin, M., & Demircan, H. Ö. (2020). Empowering technology and engineering for STEM education through programming

robots: A systematic literature review. Early Child Development and Care, 190(9), 1323–1335. https://​doi.​org/​10.​1080/​
03004​430.​2018.​15348​44

https://doi.org/10.1007/s10758-011-9177-y
https://doi.org/10.1080/02568543.2021.1981503
https://doi.org/10.1016/S0004-3702(03)00054-7
https://doi.org/10.1016/S0004-3702(03)00054-7
https://doi.org/10.1145/3355616
https://doi.org/10.1007/s10643-007-0165-8
https://doi.org/10.1007/978-3-319-02565-0
https://doi.org/10.1007/978-3-319-02565-0
https://doi.org/10.1080/00461520.2013.838920
https://doi.org/10.3102/0034654317723009
https://doi.org/10.3102/0034654316670999
https://doi.org/10.3102/0034654316670999
https://doi.org/10.1109/EDUCON.2018.8363498
https://doi.org/10.1109/EDUCON.2018.8363498
https://doi.org/10.1007/s40692-019-00147-3
https://doi.org/10.1111/tops.12192
https://doi.org/10.1007/978-1-4614-4696-5_17
https://doi.org/10.1080/03004430.2018.1534844
https://doi.org/10.1080/03004430.2018.1534844

Page 24 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

Del Sole, A. (2019). Running and debugging code. In: A. Del Sole (Ed.), Visual studio code distilled: evolved code editing for
windows, macOS, and Linux (pp. 191–209). Apress. https://​doi.​org/​10.​1007/​978-1-​4842-​4224-7_9

Demetriadis, S. N., Papadopoulos, P. M., Stamelos, I. G., & Fischer, F. (2008). The effect of scaffolding students’ context-gen-
erating cognitive activity in technology-enhanced case-based learning. Computers & Education, 51, 939–954. https://​
doi.​org/​10.​1016/j.​compe​du.​2007.​09.​012

Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it advantageous for mid-
dle school students? Journal of Research on Technology in Education, 46(3), 277–296. https://​doi.​org/​10.​1080/​15391​
523.​2014.​888272

Durak, H. Y., Yilmaz, F. G. K., & Yilmaz, R. (2019). Computational thinking, programming self-efficacy, problem solving and
experiences in the programming process conducted with robotic activities. Contemporary Educational Technology,
10(2), 173–197. https://​doi.​org/​10.​30935/​cet.​554493

Fadjo, C. L. (2012). Developing computational thinking through grounded embodied cognition [Columbia University]. https://​
doi.​org/​10.​7916/​D8805​8PP

Fadjo, C. L., Shin, J., Lu, M.-S., Chan, M., & Black, J. (2008). Embodied cognition and video game programming. 5749–5756.
https://​www.​learn​techl​ib.​org/​prima​ry/p/​29179/

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: Finding,
fixing and flailing, a multi-institutional study of novice debuggers. Computer Science Education, 18(2), 93–116.
https://​doi.​org/​10.​1080/​08993​40080​21145​08

Fitzgerald, S., McCauley, R., Hanks, B., Murphy, L., Simon, B., & Zander, C. (2010). Debugging from the student perspective.
IEEE Transactions on Education, 53(3), 390–396. https://​doi.​org/​10.​1109/​TE.​2009.​20252​66

Griffin, J. M. (2016). Learning by taking apart: Deconstructing code by reading, tracing, and debugging. Proceedings of the
17th annual conference on information technology education—SIGITE ’16, 148–153. https://​doi.​org/​10.​1145/​29781​92.​
29782​31

Grigoreanu, V., Beckwith, L., Fern, X., Yang, S., Komireddy, C., Narayanan, V., Cook, C., & Burnett, M. (2006). Gender differ-
ences in end-user debugging, revisited: What the miners found. Visual Languages and Human-Centric Computing
(VL/HCC’06), 19–26. https://​doi.​org/​10.​1109/​VLHCC.​2006.​24

Hannafin, M., Land, S., & Oliver, K. (1999). Open-ended learning environments: Foundations, methods, and models. In
C. M. Reigeluth (Ed.), Instructional design theories and models: Volume II: A new paradigm of instructional theory (pp.
115–140). Lawrence Erlbaum Associates.

Holland, J. (2009). A constraint-based ITS for the Java Programming Language [University of Canterbury]. http://​132.​181.​
17.3/​resea​rch/​repor​ts/​MastT​heses/​2009/​mast_​0906.​pdf

Jonassen, D. H., & Hung, W. (2006). Learning to troubleshoot: A new theory-based design architecture. Educational Psy-
chology Review, 18(1), 77–114. https://​doi.​org/​10.​1007/​s10648-​006-​9001-8

Kapur, M. (2015). Learning from productive failure. Learning: Research and Practice, 1(1), 51–65. https://​doi.​org/​10.​1080/​
23735​082.​2015.​10021​95

Katz, I. R., & Anderson, J. R. (1987). Debugging: An analysis of bug-location strategies. Human-Computer Interaction, 3(4),
351–399. https://​doi.​org/​10.​1207/​s1532​7051h​ci0304_2

Kazakoff, E. R., & Bers, M. U. (2014). Put your robot in, put your robot out: Sequencing through programming robots in
early childhood. Journal of Educational Computing Research, 50(4), 553–573. https://​doi.​org/​10.​2190/​EC.​50.4.f

Kim, C., & Pekrun, R. (2014). Emotions and motivation in learning and performance. In J. M. Spector, M. D. Merrill, J. Elen,
& M. J. Bishop (Eds.), Handbook of research on educational communications and technology (pp. 65–75). New York:
Springer. https://​doi.​org/​10.​1007/​978-1-​4614-​3185-5_6.

Kim, C., Kim, D., Yuan, J., Hill, R. B., Doshi, P., & Thai, C. N. (2015). Robotics to promote elementary education pre-service
teachers’ STEM engagement, learning, and teaching. Computers & Education, 91, 14–31. https://​doi.​org/​10.​1016/j.​
compe​du.​2015.​08.​005.

Kim, C., Yuan, J., Vasconcelos, L., Shin, M., & Hill, R. B. (2018). Debugging during block-based programming. Instructional
Science, 46(5), 767–787. https://​doi.​org/​10.​1007/​s11251-​018-​9453-5.

Kim, C., Belland, B. R., & Gleasman, C. (2020). Playful coding and playful learning among future early childhood educators.
In Gresalfi, M. & Horn, I. S (Eds.), The Interdisciplinarity of the Learning Sciences, 14th International Conference of the
Learning Sciences (ICLS) 2020. (4), (pp. 2411–2412). Nashville, TN: International Society of the Learning Sciences.

Kim, C., Belland, B. R., Baabdullah, A., Lee, E., Dinç, E., & Zhang, A. Y. (2021). An ethnomethodological study of abductive
reasoning while tinkering. AERA Open, 7, 23328584211008110. https://​doi.​org/​10.​1177/​23328​58421​10081​11.

Ko, A. J., LaToza, T. D., Hull, S., Ko, E. A., Kwok, W., Quichocho, J., Akkaraju, H., & Pandit, R. (2019). Teaching explicit program-
ming strategies to adolescents. Proceedings of the 50th ACM technical symposium on computer science education,
469–475. https://​doi.​org/​10.​1145/​32873​24.​32873​71

Ko, A. J., & Myers, B. A. (2008). Debugging reinvented: Asking and answering why and why not questions about program
behavior. Proceedings of the 30th international conference on software engineering, 301–310. https://​doi.​org/​10.​1145/​
13680​88.​13681​30

Lee, M. J., Bahmani, F., Kwan, I., LaFerte, J., Charters, P., Horvath, A., Luor, F., Cao, J., Law, C., Beswetherick, M., Long, S., Bur-
nett, M., & Ko, A. J. (2014). Principles of a debugging-first puzzle game for computing education. 57–64. https://​doi.​org/​
10.​1109/​VLHCC.​2014.​68830​23

Lewis, C. M., & Shah, N. (2015). How equity and inequity can emerge in pair programming. Proceedings of the eleventh
annual international conference on international computing education research, 41–50. https://​doi.​org/​10.​1145/​27876​
22.​27877​16

Li, C., Chan, E., Denny, P., Luxton-Reilly, A., & Tempero, E. (2019). Towards a framework for teaching debugging. Proceedings
of the twenty-first Australasian computing education conference on—ACE ’19, 79–86. https://​doi.​org/​10.​1145/​32869​60.​
32869​70

Luxton-Reilly, A., McMillan, E., Stevenson, E., Tempero, E., & Denny, P. (2018). Ladebug: An online tool to help novice
programmers improve their debugging skills. Proceedings of the 23rd Annual ACM conference on innovation and
technology in computer science education, 159–164. https://​doi.​org/​10.​1145/​31970​91.​31970​98

https://doi.org/10.1007/978-1-4842-4224-7_9
https://doi.org/10.1016/j.compedu.2007.09.012
https://doi.org/10.1016/j.compedu.2007.09.012
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.30935/cet.554493
https://doi.org/10.7916/D88058PP
https://doi.org/10.7916/D88058PP
https://www.learntechlib.org/primary/p/29179/
https://doi.org/10.1080/08993400802114508
https://doi.org/10.1109/TE.2009.2025266
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1145/2978192.2978231
https://doi.org/10.1109/VLHCC.2006.24
http://132.181.17.3/research/reports/MastTheses/2009/mast_0906.pdf
http://132.181.17.3/research/reports/MastTheses/2009/mast_0906.pdf
https://doi.org/10.1007/s10648-006-9001-8
https://doi.org/10.1080/23735082.2015.1002195
https://doi.org/10.1080/23735082.2015.1002195
https://doi.org/10.1207/s15327051hci0304_2
https://doi.org/10.2190/EC.50.4.f
https://doi.org/10.1007/978-1-4614-3185-5_6
https://doi.org/10.1016/j.compedu.2015.08.005
https://doi.org/10.1016/j.compedu.2015.08.005
https://doi.org/10.1007/s11251-018-9453-5
https://doi.org/10.1177/23328584211008111
https://doi.org/10.1145/3287324.3287371
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1109/VLHCC.2014.6883023
https://doi.org/10.1109/VLHCC.2014.6883023
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/3286960.3286970
https://doi.org/10.1145/3286960.3286970
https://doi.org/10.1145/3197091.3197098

Page 25 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26 	

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What
is next for K-12? Computers in Human Behavior, 41, 51–61. https://​doi.​org/​10.​1016/j.​chb.​2014.​09.​012

Lytle, N., Dong, Y., Cateté, V., Milliken, A., Isvik, A., & Barnes, T. (2019). Position: Scaffolded coding activities afforded by
block-based environments. 2019 IEEE blocks and beyond workshop (B B), 5–7. https://​doi.​org/​10.​1109/​BB488​57.​2019.​
89412​03

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: A review
of the literature from an educational perspective. Computer Science Education, 18(2), 67–92. https://​doi.​org/​10.​1080/​
08993​40080​21145​81

McNeill, K. L., & Krajcik, J. (2009). Synergy between teacher practices and curricular scaffolds to support students in using
domain-specific and domain-general knowledge in writing arguments to explain phenomena. Journal of the Learn-
ing Sciences, 18(3), 416–460. https://​doi.​org/​10.​1080/​10508​40090​30134​88

Michaeli, T., & Romeike, R. (2019). Current status and perspectives of debugging in the k12 classroom: A qualitative study.
IEEE EDUCON ’19, 1030–1038.

Morse, J. M. (1994). Designing qualitative research. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative inquiry (pp.
220–235). Thousand Oaks.

Murphy, L., Lewandowski, G., McCauley, R., Simon, B., Thomas, L., & Zander, C. (2008). Debugging: The good, the bad, and
the quirky: A qualitative analysis of novices’ strategies. ACM SIGCSE Bulletin, 40(1), 163–167. https://​doi.​org/​10.​1145/​
13523​22.​13521​91

Näykki, P., Isohätälä, J., & Järvelä, S. (2021). “You really brought all your feelings out”: Scaffolding students to identify the
socio-emotional and socio-cognitive challenges in collaborative learning. Learning, Culture and Social Interaction, 30,
100536. https://​doi.​org/​10.​1016/j.​lcsi.​2021.​100536

Neutens, T., & Wyffels, F. (2020). Analyzing coding behaviour of novice programmers in different instructional settings:
Creating vs. Debugging. 2020 International conference on computational science and computational intelligence (CSCI),
892–897. https://​doi.​org/​10.​1109/​CSCI5​1800.​2020.​00167

Papadakis, S., & Kalogiannakis, M. (2019). Evaluating a course for teaching introductory programming with Scratch to
pre-service kindergarten teachers. International Journal of Technology Enhanced Learning, 11(3), 231–246. https://​doi.​
org/​10.​1504/​IJTEL.​2019.​100478

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of learning in novice programmers.
Journal of Educational Computing Research, 2(1), 37–55. https://​doi.​org/​10.​2190/​GUJT-​JCBJ-​Q6QU-​Q9PL

Quan, G. M., & Gupta, A. (2020). Tensions in the productivity of design task tinkering. Journal of Engineering Education,
109(1), 88–106. https://​doi.​org/​10.​1002/​jee.​20303

Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. The
Journal of the Learning Sciences, 13(3), 273–304. https://​doi.​org/​10.​1207/​s1532​7809j​ls1303_2

Romero, P., du Boulay, B., Robertson, J., Good, J., & Howland, K. (2009). Is embodied interaction beneficial when learning
programming? In R. Shumaker (Ed.), Virtual and mixed reality (pp. 97–105). Springer.

Saldaña, J. (2016). The coding manual for qualitative researchers (3rd ed.). SAGE.
Saye, J. W., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in multimedia-supported learn-

ing environments. Educational Technology Research and Development, 50(3), 77–96. https://​doi.​org/​10.​1007/​BF025​
05026

Searle, K. A., Litts, B. K., & Kafai, Y. B. (2018). Debugging open-ended designs: High school students’ perceptions of failure
and success in an electronic textiles design activity. Thinking Skills and Creativity, 30, 125–134. https://​doi.​org/​10.​
1016/j.​tsc.​2018.​03.​004

Shapiro, L., & Stolz, S. A. (2019). Embodied cognition and its significance for education. Theory and Research in Education,
17(1), 19–39. https://​doi.​org/​10.​1177/​14778​78518​822149

Smolucha, L., & Smolucha, F. (2021). Vygotsky’s theory in-play: Early childhood education. Early Child Development and
Care, 191(7–8), 1041–1055. https://​doi.​org/​10.​1080/​03004​430.​2020.​18434​51

Socratous, C., & Ioannou, A. (2021). Structured or unstructured educational robotics curriculum? A study of debug-
ging in block-based programming. Educational Technology Research and Development. https://​doi.​org/​10.​1007/​
s11423-​021-​10056-x

Spinellis, D. (2018). Modern debugging: The art of finding a needle in a haystack. Communications of the ACM, 61(11),
124–134. https://​doi.​org/​10.​1145/​31862​78

Su, J.-M. (2020). A rule-based self-regulated learning assistance scheme to facilitate personalized learning with adaptive
scaffoldings: A case study for learning computer software. Computer Applications in Engineering Education, 28(3),
536–555. https://​doi.​org/​10.​1002/​cae.​22222

Sullivan, A., Strawhacker, A., & Bers, M. U. (2017). Dancing, drawing, and dramatic robots: Integrating robotics and the arts
to teach foundational STEAM concepts to young children. In M. S. Khine (Ed.), Robotics in STEM education: Redesign-
ing the learning experience (pp. 231–260). Springer International Publishing.

Sullivan, F. R., & Moriarty, M. A. (2009). Robotics and discovery learning: Pedagogical beliefs, teacher practice, and technol-
ogy integration. Journal of Technology and Teacher Education, 17(1), 109.

Tabak, I. (2004). Synergy: A complement to emerging patterns of distributed scaffolding. Journal of the Learning Sciences,
13(3), 305–335. https://​doi.​org/​10.​1207/​s1532​7809j​ls1303_3

Tracy, S. J. (2020). Qualitative research methods: Collecting evidence, crafting analysis, communicating impact (2nd ed.). Wiley
Blackwell.

Trilles, S., & Granell, C. (2020). Advancing preuniversity students’ computational thinking skills through an educational
project based on tangible elements and virtual block-based programming. Computer Applications in Engineering
Education, 28(6), 1490–1502. https://​doi.​org/​10.​1002/​cae.​22319

Umapathy, K., & Ritzhaupt, A. D. (2017). A meta-analysis of pair-programming in computer programming courses: Impli-
cations for educational practice. ACM Transactions on Computing Education, 17(4), 1–13. https://​doi.​org/​10.​1145/​
29962​01

Vaismoradi, M., Jones, J., Turunen, H., & Snelgrove, S. (2016). Theme development in qualitative content analysis and
thematic analysis. Journal of Nursing Education and Practice, 6(5), 100–110. https://​doi.​org/​10.​5430/​jnep.​v6n5p​100.

https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1109/BB48857.2019.8941203
https://doi.org/10.1109/BB48857.2019.8941203
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1080/10508400903013488
https://doi.org/10.1145/1352322.1352191
https://doi.org/10.1145/1352322.1352191
https://doi.org/10.1016/j.lcsi.2021.100536
https://doi.org/10.1109/CSCI51800.2020.00167
https://doi.org/10.1504/IJTEL.2019.100478
https://doi.org/10.1504/IJTEL.2019.100478
https://doi.org/10.2190/GUJT-JCBJ-Q6QU-Q9PL
https://doi.org/10.1002/jee.20303
https://doi.org/10.1207/s15327809jls1303_2
https://doi.org/10.1007/BF02505026
https://doi.org/10.1007/BF02505026
https://doi.org/10.1016/j.tsc.2018.03.004
https://doi.org/10.1016/j.tsc.2018.03.004
https://doi.org/10.1177/1477878518822149
https://doi.org/10.1080/03004430.2020.1843451
https://doi.org/10.1007/s11423-021-10056-x
https://doi.org/10.1007/s11423-021-10056-x
https://doi.org/10.1145/3186278
https://doi.org/10.1002/cae.22222
https://doi.org/10.1207/s15327809jls1303_3
https://doi.org/10.1002/cae.22319
https://doi.org/10.1145/2996201
https://doi.org/10.1145/2996201
https://doi.org/10.5430/jnep.v6n5p100

Page 26 of 26Kim et al. Int J Educ Technol High Educ (2022) 19:26

van de Pol, J., Volman, M., & Beishuizen, J. (2011). Patterns of contingent teaching in teacher–student interaction. Learning
and Instruction, 21(1), 46–57. https://​doi.​org/​10.​1016/j.​learn​instr​uc.​2009.​10.​004.

van de Pol, J., Mercer, N., & Volman, M. (2019). Scaffolding student understanding in small-group work: Students’ uptake
of teacher support in subsequent small-group interaction. Journal of the Learning Sciences, 28(2), 206–239. https://​
doi.​org/​10.​1080/​10508​406.​2018.​15222​58

van de Pol, J., Volman, M., Oort, F., & Beishuizen, J. (2015). The effects of scaffolding in the classroom: Support contingency
and student independent working time in relation to student achievement, task effort and appreciation of support.
Instructional Science, 43(5), 615–641. https://​doi.​org/​10.​1007/​s11251-​015-​9351-z

Vessey, I. (1985). Expertise in debugging computer programs: A process analysis. International Journal of Man-Machine
Studies, 23(5), 459–494. https://​doi.​org/​10.​1016/​S0020-​7373(85)​80054-7

Vessey, I. (1986). Expertise in debugging computer programs: An analysis of the content of verbal protocols. IEEE Transac-
tions on Systems, Man & Cybernetics, 16(5), 621.

Wei, X., Lin, L., Meng, N., Tan, W., Kong, S., & Kinshuk. (2021). The effectiveness of partial pair programming on elementary
school students’ computational thinking skills and self-efficacy. Computers & Education, 160, 15. https://​doi.​org/​10.​
1016/j.​compe​du.​2020.​104023

Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92(4), 548–573.
https://​doi.​org/​10.​1037/​0033-​295X.​92.4.​548

Wigfield, A., & Eccles, J. S. (2000). Expectancy–value theory of achievement motivation. Contemporary Educational Psychol-
ogy, 25(1), 68–81. https://​doi.​org/​10.​1006/​ceps.​1999.​1015

Williams, R., Park, H. W., Oh, L., & Breazeal, C. (2019). Popbots: Designing an artificial intelligence curriculum for early child-
hood education. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 9729–9736. https://​doi.​org/​10.​
1609/​aaai.​v33i01.​33019​729

Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry,
17, 89–100. https://​doi.​org/​10.​1111/j.​1469-​7610.​1976.​tb003​81.x

Yoon, B.-D., & Garcia, O. N. (1998). Cognitive activities and support in debugging. Proceedings Fourth Annual Symposium on
Human Interaction with Complex Systems, 160–169. https://​doi.​org/​10.​1109/​HUICS.​1998.​659974

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.learninstruc.2009.10.004
https://doi.org/10.1080/10508406.2018.1522258
https://doi.org/10.1080/10508406.2018.1522258
https://doi.org/10.1007/s11251-015-9351-z
https://doi.org/10.1016/S0020-7373(85)80054-7
https://doi.org/10.1016/j.compedu.2020.104023
https://doi.org/10.1016/j.compedu.2020.104023
https://doi.org/10.1037/0033-295X.92.4.548
https://doi.org/10.1006/ceps.1999.1015
https://doi.org/10.1609/aaai.v33i01.33019729
https://doi.org/10.1609/aaai.v33i01.33019729
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1109/HUICS.1998.659974

	Debugging behaviors of early childhood teacher candidates with or without scaffolding
	Abstract
	Introduction
	Conceptual framework
	Teacher learning of programming for computer science for all
	Scaffolding
	Debugging
	Study framework
	Research question

	Method
	Setting and participants
	Robot programming unit
	Data collection
	Data analysis

	Findings and discussion
	Theme 1. With scaffolds, participants persisted longer with their efforts
	Theme 2. Use of scaffolds enabled the instructor to allow struggle during debugging without immediate help
	Theme 3: Without scaffolds, participants often engaged in debugging alone
	Theme 4. Regardless of scaffolds, all participants engaged in trial and error and used multimodal cues in embodied debugging

	General discussion
	Conclusions
	Acknowledgements
	References

