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Introduction
How can immersive virtual reality (VR) be used in courses as a novel and efficient means 
of support? Different from conventional non-immersive 2D desktop VR, immersive VR 
places the viewer inside the virtual content. The immersive effect is further enhanced 
by reflecting natural body motions into the experience. Immersive VR is most com-
monly experienced using either of two display types. With VR headsets, the display is 
contained inside a device worn by the viewer. By contrast, Cave Automatic Virtual Envi-
ronment (CAVE) mixed reality systems present virtual environments on the walls of a 
room, which serve as display surfaces (Cruz-Neira et al., 1992). The virtual environments 
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themselves are then viewed using see-through 3D glasses. Both VR headsets and CAVEs 
allow for benefits absent from non-immersive 2D desktops, such as stereoscopic 3D, 
as well as tracking of head and hand movements, allowing free and active interaction 
with virtual content (Slater & Sanchez-Vives, 2016). The added advantage of CAVE sys-
tems over VR headsets is that the latter typically isolate the user from the real surround-
ings, whereas users in mixed reality CAVEs retain view on the physical locality of the 
room, themselves, and other users inside it. Consequently, social body language cues are 
retained, allowing users to learn collaboratively (Birchfield & Megowan-Romanowicz, 
2009). CAVEs thus constitute an interesting learning platform by having the potential to 
yield learning benefits and to do so for multiple users at a time.

When immersive VR is applied for educational purposes, one evident use case is its 
application to supplement traditional teaching practice. Examples in the literature 
of using immersive VR in addition to traditional teaching are varied and include top-
ics such as engineering (Buń et  al., 2019; Fogarty et  al., 2018; Halabi, 2020; Kamiska 
et al., 2019), language learning (O’Brien & Levy, 2008; Xie et al., 2019), legal education 
(McFaul & FitzGerald, 2020) and medical training (Huang et  al., 2016; Maresky et  al., 
2019; Pelargos et al., 2017).

Background

Recent studies into the learning benefits of immersive VR have yielded mixed results 
(Makransky et  al., 2017; Parong & Mayer, 2018) and this raises the question how and 
why learning may result from VR usage. A theoretical basis for examining the learning 
process in virtual learning environments (VLEs) may be found in the theoretical model 
of Lee et  al. (2010), foremostly grounded in the framework of Salzman et  al., (1999). 
Consistent with these frameworks, the model of Lee et al. (2010) asserts that technologi-
cal VR features indirectly affect learning outcomes via a number of psychological fac-
tors, which will be detailed later. Using structural equation modeling (SEM), Lee et al. 
(2010) obtained an acceptable fit for the model in data obtained from students learning 
frog anatomy using an interactive 2D desktop simulation. The theoretical frameworks of 
Salzman et al. (1999) and Lee et al. (2010) have since served as starting points for sev-
eral other SEM studies examining how learning arises from the use of VLE. These stud-
ies however predominantly focused on VLE of the non-immersive kind (Fokides, 2017; 
Fokides & Atsikpasi, 2018; Knutzen, 2019; Makransky & Petersen, 2019; Merchant et al., 
2012). A rare exception is Makransky and Lilleholt (2018), who adapted the model of 
Lee et al. (2010) and used SEM to compare 2D desktop VR and immersive VR headset 
conditions. Yet, Makransky and Lilleholt (2018) only investigated affective outcomes and 
did not examine learning aspects. A lack of studies thus remains regarding the learning 
process when using immersive VR.

In a previous study we explored the potential of using a collaborative immersive VLE 
in a CAVE for yielding learning gains in students (De Back et al., 2020). The study was 
conducted in persons recruited from a subject pool, and compared learning gains in two 
conditions: (1) immersive CAVE learning, (2) conventional textbook learning. Results 
indicated the immersive CAVE condition induced learning gains, and exceeded those of 
the textbook condition. However, one can argue that the learning gains obtained can be 
attributed to the non-ecologically valid settings common in experiments: participants 
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eager to receive their course credits, carefully tested under specific experimental condi-
tions. Implementing such scenarios in actual course work is far more challenging, given 
practical issues such as group sizes. For instance, perhaps one would like to implement 
an immersive VLE at the time of a specific lecture, yet is faced with the practical impos-
sibility of having a large number of students experience the VLE at the same time.

Larger group sizes are associated with reductions in performance (Mullen, 1994; Petty 
et al., 1977) because of increased difficulty to reach a consensus in larger groups (Stri-
jbos et  al., 2004) and social loafing (i.e., free riding) (Suleiman & Watson, 2008). For 
non-immersive (gamified) settings, several meta-analyses have investigated the connec-
tion between group size and learning. Vogel et al. (2006) examined 32 studies spanning 
1986–2003 on the effect of games and interactive simulations on learning. No signifi-
cant learning differences were observed between single- and multi-person groups, albeit 
the case that the effect size was higher in the single-person groups. Merchant et  al. 
(2014) analyzed 67 studies published up to 2011 using games, simulations and virtual 
worlds and also found learning was more effective for individual compared to collabora-
tive study for games, and observed no significant difference for simulations and virtual 
worlds.

For practical implementations in courses, single-person sessions are hardly feasi-
ble due to large student numbers and restrictions on available time. Knowing whether 
learning gains are obtained in small, medium and large groups is therefore desirable. If 
learning gains are only obtained in small and not in large groups, findings may be prom-
ising from a research perspective but might complicate application from an education 
perspective.

A similar practical issue is when to apply an immersive VLE as part of course work. 
That is, if an immersive VR lesson is connected to the overarching subject of a course, 
prior knowledge is likely to vary depending on when the lesson is applied. This raises 
the question whether the time of application of immersive VLEs modulates learning 
gains when using these environments. Several non-VR studies have indicated that dif-
ferent levels of prior knowledge may modulate learning when using multimedia, a phe-
nomenon also known as the “expertise reversal effect” (Chen et al., 2017; Kalyuga et al., 
2003). In this effect, guided instruction helpful for learners with little prior knowledge 
becomes progressively redundant and ultimately disadvantageous for learners with high 
levels of prior knowledge (Kalyuga, 2014). The expertise reversal effect is explained using 
cognitive load theory, which posits unnecessary taxation of limited cognitive resources 
may hamper learning (Sweller et al., 2011). To prevent the expertise reversal effect from 
occurring, instructions could dynamically adapt to the prior knowledge level of the 
learner (Kalyuga, 2007). The fundamental practical question how the time of application 
of a VLE as part of course work may affect learning has seldom been investigated.

The current study

The current study aims to determine the circumstances yielding a trade-off between 
learning gains and practical feasibility for providing immersive VR experiences to large 
student numbers. To this end, we investigate whether, and if so, how group size and time 
of application affect learning in immersive VR when used in the ecologically valid setting 
of an undergraduate course. In addition, we examine the broader picture of how these 
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and other factors in immersive VR work in tandem to produce learning. The resulting 
insights are to facilitate educational institutions considering collaborative immersive 
VLEs as a novel and efficient means to promote learning in their students. An immersive 
CAVE-based VLE on the topic of 3D human neuroanatomy was employed that lever-
aged natural collaborative learning. Using this VLE, we examined learning gains while 
manipulating group size and time of application. Learning gains were expected to be 
higher in single-person groups compared to multi-person groups, while prior knowl-
edge was expected to change between application time periods. We expected no interac-
tion between group size and time of application.

Method
Study design

We experimentally manipulated group size and time of application to assess a possible 
effect on learning gains in a balanced, 3 (group size) × 3 (time of application) between-
subjects design. As we did not expect an interaction between the two, group size was 
allowed to be nested within time of application. Group sizes consisted of single-person, 
two- to four-person and five- to six-person groups. This allowed a comparison between 
both the smallest, and approximately the largest number of learners a CAVE system 
can reasonably hold. The medium-sized group was included to gain a more refined 
understanding of the effect of group size in computer-mediated learning, a differentia-
tion mostly absent from meta-analyses on this subject. In accordance with the design 
of the study, each participant took part only once in the study, in one of the three group 
sizes and in one of the three times of application. The effectiveness of the VLE to incur 
learning at different levels of prior knowledge was assessed by applying the VLE in three 
different time periods: the pre-, mid- and late-term of an undergraduate course. The 
overarching theme of the course was cognitive science with a lecture on neuroscience in 
the mid-term of the course that was most closely related to the topic of the VLE. In the 
pre-term participants had not partaken in the course, yet were from the same student 
population and background and were naïve to the subject of the VLE. The second time 
period involved students enrolled in the cognitive science course and was conducted in 
the mid-term of the course, right before the neuroscience lecture. The third time period 
was conducted in the late-term of the course after the neuroscience lecture. As such, the 
time periods respectively reflected minimal, medium and highest possible knowledge of 
the topic of neuroanatomy of the VLE.

Participants

One hundred fifty-eight students took part in the study, either recruited using a subject 
pool (first time period) or as part of an undergraduate course (second and third time 
period). Participant candidates younger than 18 or older than 67  years of age, with a 
past or current condition of migraine or epilepsy, with (expected) pregnancy, without 3D 
vision and without normal or corrected-to-normal vision were excluded from participa-
tion. As the second and third periods of the study were conducted as part of a course, 
enrolled students not meeting the requirements were offered an alternative learn-
ing experience using a non-collaborative 2D desktop version of the VLE. No data was 
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collected for these students as they were not part of the study. Permission to conduct the 
study was granted by the Research Ethics Committee at Tilburg University.

Apparatus

A 5.2 m × 5.2 m four-wall WorldViz CAVE, four corner speakers, a position-tracked 3D 
mouse and active 3D see-through glasses were used to present the immersive virtual 
environment to the users and to provide interactivity. The VLE was created using Unity 
3D version 5.3.4f1. A 3D model of a human brain and its parts was integrated into the 
environment and was obtained from database BodyParts3D/Anatomography (The Data-
base Center for Life Science, CC Attribution-Share Alike 2.1 Japan). Realistic speech 
used to provide guidance and feedback to the user was generated using Amazon Polly, a 
text-to-speech engine.

Materials

A collaborative immersive CAVE-based VLE on the subject of 3D human neuroanat-
omy was created based on content obtained from a chapter of a conventional textbook 
(Friedenberg & Silverman, 2006) and concerned the memorization of brain area shape, 
position, name and function. The VLE was interactive and incorporated a feedback sys-
tem, enabling immersive learning without the need for teacher supervision. The VLE 
featured stereoscopic 3D viewed using position tracked see-through glasses, incorpo-
rated gamification elements and was designed for both single- and multi-player use. The 
instructional design of the VLE was structured to foster interdependence and active par-
ticipation. As an example of this, the environment guided users to take turns in directly 
interacting with the educational content after a set amount of interactions. Audiovisual 
stimuli accompanied direct interactions with the environment, thus making clear how 
the environment was interacted with at any one time and served to foster active discus-
sion. Different stages segmented the educational content. This content could be freely 
explored and generatively interacted with using embodied actions. For most stages, the 
structure of the educational content was essentially the same, with different categories 
of information each shown on a separate wall of the four-wall CAVE. The main wall 
showed a large size human brain, used to indicate the shape and position of brain areas 
and their interconnections, while a second wall showed individual brain areas. The third 
and fourth wall contained large labels, respectively showing the names of the individual 
brain areas and descriptions of their function.

At the beginning of a stage, large colored lines connected individually presented brain 
areas to their respective spatial position within the whole brain, as well as indicated 
their correct name and function. After memorization of the information, the lines were 
removed. Using a position tracked 3D mouse, the user(s) had to recreate the correct 
connections between the individual elements by drawing connecting lines, thus prov-
ing to have learned the information. A virtual lever contained on the main wall could 
be pulled when needed to verify if one or multiple answers were correct. For correct 
answers a green tick mark was shown above the connecting line in question, while errors 
were shown by coloring the offending connecting line red. At the end of each stage, all 
educational content was integrated onto one wall, allowing review and consolidation of 
the educational content.
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Several design elements of the VLE supported learning at different levels of prior 
knowledge. Depending on the needs of the user, the large size human brain and its indi-
vidual components shown on the main wall could be examined from multiple angles to 
create a better understanding of their structure and spatial relationships. The VLE was 
flexible in allowing novice users to receive feedback each time an answer was input into 
the system, while more advanced users could input multiple related answers at a time 
without receiving redundant intermittent feedback. A scoreboard provided additional 
feedback on performance to motivate users at different levels of expertise, yet its use 
was not enforced to prevent hindering those who could perform well without additional 
support structures. Figure 1 depicts the VLE and its use to enable engaged collaborative 
learning.

Tests

Two 20-item four-choice multiple choice question tests on the educational content of 
the VLE were used to assess learning gain performance, identical to the ones used by De 
Back et al. (2020). Question type (brain area name, function, location) and number were 
counterbalanced between the two tests. The tests were interchangeably used as pretest 
and posttest. The order of the tests was counterbalanced such that learning gain perfor-
mance could not depend on test order.

Measurement model

The model of Lee et  al. (2010) was adopted for the SEM analysis into how learning 
results from immersive VR usage. This model is grounded in the model of learning in 
immersive VR of Salzman et  al. (1999) as well as several models of technology-medi-
ated learning, including those of Alavi and Leidner (2001), Sharda et al. (2004) and Wan 
et al. (2007). Lee et al. (2010) use these studies to support the variables of their model 
and their predicted relationships. The model assumes technological VR features have an 
indirect impact on learning outcomes through usability (i.e., the interaction experience), 
and through several psychological factors (i.e., the learning experience). VR features are 
measured using representational fidelity (i.e., the realism of both the environment and 
that of the behavior of the objects within it), as well as using immediacy of control (i.e., 
the extent of the ability to explore the environment from different perspectives and to 

Fig. 1  Left: Scene of collaborative learning with a user highlighting an individual part of the whole brain 
presented on the main wall of the CAVE. Right: Hand-drawn connections between individual brain areas 
(right) and their spatial position within the whole brain (left). Green tick marks and red lines indicate VLE 
feedback on right and wrong connections
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observe and interact with its components). For usability, two aspects are assessed: The 
quality aspect is measured using perceived usefulness and the accessibility aspect is 
measured using perceived ease of use. The model also contains five psychological fac-
tors together describing the learning experience: presence (i.e., the sense of being part 
of a computer-generated environment, Heeter, 1992; Steuer, 1992), motivation, cogni-
tive benefits (including perceived benefits to absorb, comprehend and apply the learn-
ing material), control and active learning (i.e., perceived control over one’s learning, 
engaged and involved learning) and reflective thinking. The model assumes that VR fea-
tures affect these five factors both directly as well as through usability. These factors in 
turn are assumed to be directly predictive of learning outcomes. Learning outcomes are 
measured using quantitative learning gain performance, as well as using perceived learn-
ing effectiveness of and satisfaction with the experience.

For the purpose of the current study, the model of Lee et al. (2010) was extended with 
the manipulated variables group size and time of application. Group size was assumed 
to directly predict VR features and usability as well as learning gain performance. Time 
period was assumed to predict usability only as appraisal of VR features was thought to 
be time independent. The resulting measurement model is presented in Fig. 2.

Presence

Motivation

Cognitive
Benefits

Control &
Active

Learning
Outcomes

Usability

REP

Reflective
Thinking

IMM

VR
Features

Group
Size

Time

USE EASE
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REP:
IMM:
USE:
EASE:
PERF:
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Representational fidelity
Immediacy of control
Perceived usefulness
Perceived ease of use
Performance achievement
Perceived learning effectiveness
Satisfaction

Fig. 2  Measurement model as adopted from Lee et al. (2010), extended with the manipulated variables 
group size and time of application. Arrows indicate the hypothesized causal relationships between the 
variables in the model
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Questionnaires

All self-report variables of the SEM model were measured using questionnaires as 
obtained from Appendix A of Lee et  al. (2010)’s paper and were applied in the study 
of the current paper without alteration. One exception was the presence questionnaire, 
which was originally measured using a single item, and was replaced using an 18-item 
spatial presence subscale obtained from the ITC-Sense of Presence Inventory (Lessiter 
et al., 2001). In addition to the questionnaires of Lee et al. (2010) we used a 4-item ques-
tionnaire to assess preference to VR learning over textbook learning. Items of all ques-
tionnaires were measured on a 5-point Likert scale.

Procedure

After receiving both oral and written information about the purpose of the study and 
signing an informed consent form, the participant(s) completed a written pretest. 
Inside the CAVE, the participant(s) briefly practiced using an introduction stage under 
the scripted guidance of the experimenter. Next, the experimenter left the CAVE and 
the participant(s) started with the immersive learning experience. After completing all 
stages, the participant(s) exited the CAVE and completed a written posttest and ques-
tionnaire, concluding the session. Session duration averaged to 90 min. The experimen-
tal procedure is depicted in Fig. 3.

Data analysis

Unless specified otherwise, statistical tests were performed using a 3 (group size) × 3 
(time of application) two-way analysis of variance (ANOVA) F-test with SPSS 24 (IBM 
Corp. in Armonk, NY) and a non-parametric two-way Aligned-Rank ANOVA F-test 
using the ARTool package (Kay & Wobbrock, 2019) in R (R Core Team, 2019) when par-
ametric assumptions were violated. As prior knowledge was assumed to differ between 
time periods, learning gain performance was measured by calculating the normalized 
gain score, which accounts for differences in prior knowledge (Hake, 1998, 2002). Miss-
ing answers to the tests were treated as errors. Using the percentage of correct answers 
in the pretest and posttests, normalized gain was computed using the formula: (Post-
test −  Pretest)/(100 −  Pretest). Effect size is indicated using partial eta-squared (ηp2). 
Statistical significance is reported two-tailed (α = 0.05). All post-hoc pairwise compari-
sons are corrected for multiple testing using Tukey’s HSD.

SEM analyses were conducted in AMOS 24 (IBM SPSS, Chicago) using maximum 
likelihood estimation. Goodness-of-fit was assessed using normed χ2 (χ2/df ), the com-
parative fit index (CFI), Tucker–Lewis Incremental Fit Index (TLI) and root mean 
square error of approximation (RMSEA), with values ≥ 0.95 for CFI and TLI and ≤ 0.06 
for RMSEA taken as indicative of a good fit (Hu & Bentler, 1999).

CAVE learningpretest posttest questionnaire

Time (approximately 90 min.)
Fig. 3  Overview of experimental procedure
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Technical difficulties occurred in two sessions for four participants, and one partici-
pant dropped out due to a headache. In addition, four participants had 20% or more 
missing data in either the pretest and posttest (n = 1) or the questionnaire (n = 3). Data 
of two participants constituted true outliers based on univariate and multivariate tests 
of non-normality. All further analyses were conducted for the remaining participants 
(n = 147, 76 females, age: M = 22.122, SD = 4.144). The number of participant groups per 
group size for the pre-, mid- and late term of the cognitive science course is presented in 
Table 1.

Measure reliability

A factor analysis was performed on the items of the self-report questionnaires. Presence 
was treated as a single-item measurement, consistent with Lee et al. (2010). The items of 
the motivation questionnaire consisted of four categories, and was reflected in the four 
components found for this questionnaire in the factor analysis. In accordance with Lee 
et al. (2010), the questionnaire as a whole is used for the SEM analysis. Table 2 presents 
an overview of the loadings of the items of the questionnaire scales as well as Cronbach’s 
α, which was satisfactory for all questionnaires.

Table 1  Number of participant groups per group size for the pre-, mid- and late-term

Term 1-person groups 2–4 person groups 5–6 
person 
groups

Pre-term 16 19 18

Mid-term 8 12 11

Late-term 25 23 15

Table 2  Questionnaire scales, with item loading ranges and reliability

NA = Not applicable, treated as single-item measurement

Scale Loadings Cronbach’s α

Representational fidelity .810–.909 .833

Immediacy of control .823–.885 .866

Perceived usefulness .783–.931 .907

Perceived ease of use .649–.873 .755

Presence NA NA

Motivation component 1 .374–.829 .874

Motivation component 2 .341–.836

Motivation component 3 .610–.793

Motivation component 4 .434–.641

Cognitive benefits .741–.866 .858

Control and active learning .736–.869 .796

Reflective thinking .784–.873 .825

Perceived learning effectiveness .698–.810 .889

Satisfaction .508–.854 .862
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Results
Prior knowledge

As the VLE was applied in three time periods, namely the pre-, mid- and late-term of a 
course, it was first verified whether prior knowledge differed between these three time 
periods using the percentage of correct answers on the pretest using a one-way ANOVA 
F-test. As expected, a significant effect of time of application on prior knowledge was 
present, F(2, 144) = 5.30, p = 0.006, ηp2 = 0.069. Pairwise comparisons indicated that tak-
ing the course led to an increase in prior knowledge, as the percentage of correct answers 
on the pretest was significantly lower in the first time period (M = 29.906, SD = 10.354) 
compared to both the second (M = 36.290, SD = 10.721), p = 0.034, and third time period 
(M = 36.111, SD = 12.097), p = 0.010, while there was no difference between the latter 
two time periods, p = 0.997.

Learning gains

As significant differences in prior knowledge existed between time periods, these differ-
ences were taken into account by using normalized learning gains which adjust for the 
score on the pretest. No significant interaction between time of application and group 
size was present for learning gains, F(4, 138) = 0.88, p = 0.480, ηp2 = 0.025. Moreover, no 
significant main effect of time period on learning gains was observed, F(2, 138) = 0.21, 
p = 0.807, ηp2 = 0.003, first time period: M = 0.319, SD = 0.244; second time period: 
M = 0.334, SD = 0.262; third time period: M = 0.353, SD = 0.247, indicating that learn-
ing gains due to using immersive VR were comparable at different time periods of the 
course. By contrast, the main effect of group size on learning gains was significant, F(2, 
138) = 6.41, p = 0.002, ηp2 = 0.085, and showed that group size was a relevant factor for 
learning with immersive VR. Pairwise comparisons revealed that the mean learning gain 
in the single-person groups (M = 0.430, SD = 0.220) was significantly higher than that of 
the two- to four-person groups (M = 0.307, SD = 0.279), p = 0.031, as well as that of the 
five- to six-person groups (M = 0.269, SD = 0.207), p = 0.005, and that the two–four-per-
son- and five- to six-person groups did not differ significantly, p = 0.718. Besides show-
ing that group size significantly modulated learning gains, the findings indicated that 
learning gains were present for all configurations of group size and time period.

Learning preference

Besides learning gains, student preference for learning with VR over textbook learn-
ing was assessed using a 4-item questionnaire to gain insight into student attitude 
towards the use of these two learning platforms. A non-parametric two-way ANOVA 
F-test indicated that there was no significant interaction between the effect of time of 
application and group size on preference for VR learning over textbook learning, F(4, 
138) = 0.87, p = 0.486, ηp2 = 0.024. The main effect of time period on learning preference 
was significant, F(2, 138) = 3.50, p = 0.033, ηp2 = 0.048. Yet, neither the pairwise com-
parison between the first (M = 3.731, SD = 1.147) and second time period (M = 3.694, 
SD = 1.130), p = 0.957, first and third time period (M = 4.163, SD = 0.962), p = 0.068, nor 
the second and third time period, p = 0.078, was significant. Therefore, mean preference 
for VR learning was highest in the third time period, but this did not differ significantly 
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from the preceding time periods. No significant main effect of group size was observed, 
F(2, 138) = 2.40, p = 0.094, ηp2 = 0.034, indicating student preference for learning with 
VR was robust for the number of members in the group. The overall mean of preference 
for VR learning over textbook learning irrespective of time period and group size was 
3.908 (SD = 1.083).

Measurement model assessment

Internal consistency of the measurement model was verified by assessing composite 
reliability and average variance extracted of the constructs in the model. Cronbach’s α 
exceeded the common threshold of 0.7 for all constructs and was satisfactory. Consist-
ent with Lee et  al. (2010), constructs presence, motivation, cognitive benefits, control 
and active learning and reflective thinking were measured using a single observed vari-
able, such that computation of composite reliability and average variance extracted was 
not possible. Composite reliability and average variance extracted of the remaining con-
structs respectively exceeded the recommended threshold of 0.6 (Bagozzi & Yi, 1988) 
and 0.5 (Fornell & Larcker, 1981). Table 3 presents an overview of the internal consist-
ency values of the measurement model.

Structural model and analysis

A confirmatory factor analysis of the measurement model yielded a model fit approach-
ing yet exceeding acceptable limits (normed χ2 = 1.956, CFI = 0.960, TLI = 0.942, 
RMSEA = 0.081). In a two-step explorative process, (1) one path was added from per-
ceived ease of use to motivation due to a large modification index of 21.093, after which 
an acceptable model fit was obtained (normed χ2 = 1.625, CFI = 0.974, TLI = 0.962, 
RMSEA = 0.065) and (2) non-significant paths were successively removed in order of 
largest non-significance, consistent with Makransky and Petersen (2019). Most promi-
nently, VR features were restricted to directly predict usability and presence, and time of 
application did not significantly predict usability, and was therefore removed. This pro-
cess yielded a more parsimonious model containing significant paths only, with a further 
improved acceptable fit (normed χ2 = 1.437, CFI = 0.983, TLI = 0.977, RMSEA = 0.055). 
The resulting structural model is presented in Fig.  4. The paths in the model are 

Table 3  Internal consistency of the measurement model

NA = Not applicable, as these constructs were measured using a single observed variable

Construct Composite reliability Average 
variance 
extracted

VR features .89 .90

Usability .61 .66

Presence NA NA

Motivation NA NA

Cognitive benefits NA NA

Control and active learning NA NA

Reflective thinking NA NA

Learning outcomes .79 .59
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accompanied by (1) their standardized path coefficients (β), indicating the degree and 
direction (negative/positive) of the direct relationship between a pair of independent 
and dependent variables, and (2) the statistical significance of the relationship. Addi-
tionally, squared multiple correlations (R2) are provided, indicating the proportion of 
the variance of the variable in question explained by the model. Furthermore, standard 
errors, critical ratios and confidence intervals for the unstandardized path coefficients of 
the model are presented in Appendix.

The structural model explained 95% of the variance of learning outcomes, 87% of usa-
bility, 35% of presence, 76% of motivation, 79% of cognitive benefits, 65% of control and 
active learning and 56% of reflective thinking.

Group size had a small direct negative effect on VR features, β = − 0.27, p = 0.003, 
and a small direct negative effect on learning gain performance, β = − 0.19, p = 0.018. 
By contrast, VR features strongly predicted usability, β = 0.93, p < 0.001, as well as pres-
ence, β = 0.60, p < 0.001, and usability strongly predicted motivation, β = 0.72, p < 0.001, 
cognitive benefits, β = 0.89, p < 0.001, control and active learning, β = 0.81, p < 0.001 and 
reflective thinking, β = 0.75, p < 0.001.

Presence

Motivation

Cognitive
Benefits

Control &
Active

Learning
Outcomes

Usability

REP

Reflective
Thinking

IMM

VR
Features

Group
Size

USE EASE

PERF

PERC

SAT

R2= 0.76 R2= 0.85

R2= 0.25R2= 0.80

R2= 0.35

R2= 0.76

R2= 0.79

R2= 0.65

R2= 0.56

R2= 0.13

R2= 0.81

R2= 0.84

R2= 0.87

R2= 0.07

R2= 0.95

0.87***

0.92***

-0.27**

0.60***

-0.19*

0.90*** 0.50***

0.25***
0.72***

0.89***

0.81***

0.75***

0.09*

0.27***

0.23***

0.41***

0.15**

0.27***

0.90***

0.93***

0.92***

Normed χ2 = 1.437, df = 57, p = 0.017,
CFI = 0.983, TLI = 0.977, RMSEA = 0.055

REP:
IMM:
USE:
EASE:
PERF:
PERC:
SAT:

Representational fidelity
Immediacy of control
Perceived usefulness
Perceived ease of use
Performance achievement
Perceived learning effectiveness
Satisfaction

Fig. 4  Structural model showing hypothesized relationships, their standardized path coefficients and 
statistical significance, as well as the proportion of variance (R2) of the variables as explained by the model. 
*p < 0.05, **p < 0.01, ***p < 0.001
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Of the five psychological factors directly predicting learning outcomes, the stand-
ardized path coefficient of presence was distinctly smaller than the others, presence: 
β = 0.09, p = 0.020, motivation: β = 0.41, p < 0.001, cognitive benefits: β = 0.27, p < 0.001, 
control and active learning: β = 0.15, p = 0.003, reflective thinking: β = 0.23, p < 0.001. 
The model explained a similar 81% and 84% of the respective variance of perceived 
learning effectiveness and satisfaction, and 13% of learning gain performance.

Discussion and conclusion
The current study investigated factors potentially modulating immersive learn-
ing with CAVEs when applied in courses. In earlier work we had established learn-
ing gains in a VLE compared to a textbook condition in an experimental lab setting. 
The current study extended these findings to the more ecologically valid setting of 
an actual course. Two factors, group size and time of application, were examined to 
gain insight into the circumstances yielding a trade-off between learning gains and 
the feasibility for providing immersive VR learning to large student numbers. To this 
end, immersive VR was applied in small (single-person), medium (two- to four-per-
son) and large size (five- to six-person) groups, both in the pre-, mid- and late-term 
of an undergraduate course. Additionally, it was examined how learning in immersive 
VR may arise from technological VR features mediated by learning and interaction 
experience.

Results replicated those of our previous study in that use of the VLE yielded learn-
ing gains. In addition, results confirmed that the course increased prior knowledge 
as the percentage of correct scores on a pretest directly preceding VR exposure was 
higher in the mid-term and the late-term of the course compared to the pre-term. 
Group size had a negative medium size effect on learning gain performance. Consist-
ent with our expectations, learning gains were present for all groups and were highest 
for single-person groups, and diminished as group size increased. This is in line with 
the findings of the meta-analyses of Vogel et  al. (2006) and Merchant et  al. (2014), 
reporting performance benefits of single-person over multi-person groups for games 
and interactive simulations, and games yet not simulations and virtual worlds respec-
tively. The current study contributes to the literature in showing that findings for the 
effect of group size in non-immersive settings hold for immersive settings, and does 
this for single, medium and large-size groups, a more refined level of differentiation 
absent from the aforementioned meta-analyses.

Time of application of immersive VR did not significantly affect learning gain per-
formance, implying that students learned just as well with the VLE regardless of their 
level of prior knowledge. This is indicative of the efficacy of the design of the VLE 
used, and supports the assertion that an expertise reversal effect in which high prior 
knowledge learners are disadvantaged by guided instruction benefiting low prior 
knowledge learners can be countered given appropriate instructional measures (Kaly-
uga, 2007). The absence of an effect of time of application and thereby of prior knowl-
edge has implications for the ease of use of immersive VR in education and will be 
examined in detail hereafter.
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Previous studies have reported positive student attitudes towards learning with 
both immersive and non-immersive VR (Jensen & Konradsen, 2018; Mikropoulos & 
Natsis, 2011). The current study contributes in providing evidence of student pref-
erence for learning with immersive VR over textbook learning. Additionally, results 
revealed that the preference for VR was unaffected by group size and time of appli-
cation and reflects the robustness of student’s positive outlook of VR to support 
learning.

SEM analyses were conducted using a parsimonious version of the model of Lee et al. 
(2010) to investigate the broader picture of how immersive VR usage yields learning out-
comes, explained by quantitative learning gain performance, perceived learning effec-
tiveness and satisfaction. Results were reflective of the findings of the ANOVA F-tests 
conducted prior, indicating a significant negative effect of group size increase and no 
significant effect of time of application on learning gains. VR features strongly predicted 
usability, which in turn strongly affected learning outcomes mediated by psychological 
factors presence, motivation, cognitive benefits, control and active learning and reflec-
tive thinking, and replicates previous findings (Makransky & Lilleholt, 2018; Makransky 
& Petersen, 2019; Makransky et al., 2017). Presence was directly affected by VR features 
yet not by usability, and did not strongly predict learning outcomes.

The findings of the current study have implications for the use of immersive VR in 
education. The findings support the use of VR to complement conventional teaching 
practice as: (1) the VLE of the current study consistently yielded learning gains across 
different group sizes and application time periods, (2) these results were obtained in 
a large student population as part of real-life teaching practice, (3) the application of 
VR did not require instructional intervention, showing that VR learning benefits can 
be obtained without increasing the workload of teachers.

Additionally, the findings provide new insight into the circumstances of effective 
use of immersive VR for learning. Specifically, findings indicated group size to be a 
factor of relevance for immersive learning, while the time of application of immersive 
learning as part of a course was not. The implication of this is that for courses with 
large student numbers, the use of medium size two- to four-person group sessions 
dispersed across the course is recommended to achieve a trade-off between learning 
gains and practical feasibility for providing all students with an immersive learning 
experience. For lower student numbers, the use of smaller size groups is recom-
mended for yielding the highest learning gains.

Finally, the current study has implications for the informed instructional design of 
immersive VLE. The findings of the SEM analyses indicate the importance of design-
ing for high usability through informed use of technological VR features, shown to be 
strongly predictive of higher learning outcomes. Designing for high usability in this way 
may also be beneficial as a countermeasure to a potential negative effect of larger group 
size on learning. VR features should primarily be incorporated to serve usability with 
the aim of increasing learning and should not merely be applied for their immersive 
effect (Dalgarno & Lee, 2010; Fowler, 2015). This is supported by the finding in the SEM 
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analyses that presence resulting from immersion was not strongly linked to learning out-
comes. How to best foster usability through the informed use of VR features will depend 
on the type and structure of the educational content in question.

In the current study, interaction time with the VLE per user decreased as group size 
increased. The VLE was designed to keep all users actively engaged in learning regard-
less, yet the possibility remains that the coupling between interaction time and group 
size affected learning gains. Future research should aim to disentangle these factors, as 
well as investigate possibilities allowing multiple users to interact simultaneously with 
a VLE, thus increasing interaction time of users without increasing session duration. 
Moreover, collaborative learning in non-immersive computer-mediated environments 
has been suggested to be modulated by additional factors, including the nature of the 
learning objective and the type of task used (Strijbos et  al., 2004). Future studies are 
to examine these additional factors for VLE for further understanding of the circum-
stances for optimal learning in these environments. Additionally, learning preference 
for VR over textbook learning could have been modulated by additional factors unac-
counted for in the current study. An example of such a factor is prior experience with 
VR. More research is needed to elucidate whether this factor affects learning preference 
for VR over textbook learning and especially for VR headsets, the use of which is likely 
to increase given current trends.

For the SEM analyses, an acceptable model fit was obtained after adding one path from 
perceived ease of use to motivation. Additionally, non-significant paths were removed to 
achieve a more parsimonious model, consistent with Makransky and Petersen (2019). 
Due to the modifications made to the model it is necessary for future studies to verify 
whether the fit of the modified model is observed as well in different populations. The 
structural model of the current study explained a large proportion of the variance of 
self-reported learning outcomes, yet a comparatively small proportion of the variance 
of quantitative learning gain performance. This is consistent with the pattern of results 
reported by Lee et al. (2010). A worthwhile avenue for further research therefore is to 
investigate whether additional factors not contained in the current model might explain 
remaining variance of learning gain performance. A candidate factor is cognitive load, 
which may negatively affect learning when unnecessarily high (Sweller et al., 2011). An 
examination of a possible moderating effect of cognitive load seems especially relevant 
for immersive VR, suggested to have the potential for inducing high load through the 
inclusion of features irrelevant to learning (Parong & Mayer, 2018).

The current study examined factors affecting learning with immersive VR when used 
as part of an undergraduate course. The use of the VLE resulted in learning gains. Group 
size significantly modulated these gains, whereas time of application did not. These find-
ings provide new insights into the use of immersive VR in courses in general and the 
circumstances for effective learning in VLE specifically.
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Appendix
See Table 4.
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Table 4  Unstandardized estimates, standard errors, critical ratios and confidence intervals of the 
paths in the model

C. R. Critical ratio, CI confidence interval

Construct Path Construct Estimate S. E C. R 95% CI

VR features ← Group size − 0.106 0.036 − 2.941 [− 0.177, − 0.035]

Usability ← VR features 0.939 0.180 5.213 [0.586, 1.292]

Perceived ease of use ← Usability 0.553 0.092 5.989 [0.373, 0.733]

Motivation ← Usability 1.240 0.199 6.226 [0.850, 1.630]

Cognitive benefits ← Usability 2.057 0.319 6.450 [1.432, 2.682]

Control and active learning ← Usability 1.782 0.287 6.203 [1.219, 2.345]

Motivation ← Perceived ease of use 0.216 0.043 4.971 [0.132, 0.300]

Reflective thinking ← Usability 1.810 0.302 5.989 [1.218, 2.402]

Presence ← VR features 1.065 0.204 5.213 [0.665, 1.465]

Learning outcomes ← Presence 0.100 0.043 2.320 [0.016, 0.184]

Learning outcomes ← Motivation 0.449 0.059 7.610 [0.333, 0.565]

Learning outcomes ← Cognitive benefits 0.217 0.047 4.649 [0.125, 0.309]

Learning outcomes ← Control and active learning 0.127 0.042 2.986 [0.045, 0.209]

Learning outcomes ← Reflective thinking 0.179 0.036 5.033 [0.108, 0.250]

Perceived learning effec-
tiveness

← Learning outcomes 1.003 0.055 18.251 [0.895, 1.111]

Satisfaction ← Learning outcomes 0.997 0.055 18.251 [0.889, 1.105]

Performance achievement ← Learning outcomes 0.107 0.032 3.367 [0.044, 0.170]

Perceived usefulness ← Usability 2.587 0.400 6.467 [1.803, 3.371]

Performance achievement ← Group size − 0.058 0.025 − 2.373 [− 0.107, − 0.009]

Representational fidelity ← VR features 2.612 0.420 6.226 [1.789, 3.435]

Immediacy of control ← VR features 2.373 0.375 6.322 [1.638, 3.108]
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