
RESEARCH ARTICLE Open Access

Teaching technology with technology:
approaches to bridging learning and
teaching gaps in simulation-based
programming education
Md Golam Jamil* and Sakirulai Olufemi Isiaq

* Correspondence: md.jamil@solent.
ac.uk
Research Fellow, Solent Learning &
Teaching Institute, Solent University,
East Park Terrace, Southampton
SO14 0YN, UK

Abstract

The learning of programming using simulation involves unique educational
environments and human factors. However, research in this field has been mainly
centred on the efficacy of the simulation tool whereas there is a lack of comparative
studies between the associated teaching and learning procedures. To address the gap,
this study facilitates an evidence-driven discussion on learning and teaching, as well as
their relationship, in simulation-based programming education. Investigation areas
include virtual and physical environments of simulation sessions, relevant learning
enablers and impediments, and roles of students and faculty members in the process.
The study followed qualitative methodology using focus groups and semi-structured
interviews. Thirty-seven students and four lecturers on a computing course at a British
university shared experiences and perceptions on simulation-based programming
sessions. The data were analysed thematically and through cross-evaluation. The
findings have provided fresh insights on several enabling and challenging aspects of
simulation-based programming education. On the one hand, visualisation, consistency
of learning procedures, and student engagement emerged as empowering factors. On
the other, the negative implications of collaborative tasks, students’ attention diversion
while shifting between virtual and physical environments of learning, and lecturers’
over-emphasis on technology in teaching preparation, appeared as challenges. The
paper contributes to understanding the advantages and challenges of using simulation
in programming education. It suggests essential teaching principles and their
application procedures, which add value to the overall computing education at tertiary
level. The learning is transferrable among other engineering programmes and
academic disciplines that use simulation for educational purposes.

Keywords: Simulation, Programming, Learning, Teaching, Higher education

Introduction
The learning and teaching of programming is a common element in tertiary comput-

ing syllabuses. Programming requires higher level cognitive competences, such as

creativity and critical thinking, which are also important in humanities disciplines

(Bergin, Reilly, & Traynor, 2005). Programmers need to ‘select, reflect, evaluate, jus-

tify, communicate and be innovative in their problem solving’, making programming

demanding and enthralling (QAA, 2016, p. 12). However, historically, there are high

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Jamil and Isiaq International Journal of Educational Technology in Higher Education
          (2019) 16:25 
https://doi.org/10.1186/s41239-019-0159-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s41239-019-0159-9&domain=pdf
mailto:md.jamil@solent.ac.uk
mailto:md.jamil@solent.ac.uk
http://creativecommons.org/licenses/by/4.0/


dropout rates in this academic subject as many students experience boredom and

alienation while learning (Bennedsen & Caspersen, 2007; Giannakos, Pappas, Jaccheri,

& Sampson, 2017; Mann & Robinson, 2009). Many academic practitioners also per-

ceive programming as a very difficult subject to teach, thus prompting a rethink about

how this subject should be taught (Guzdial, 2015; Jenkins, 2002).

Research findings indicate various educational benefits of using simulation in en-

gineering education including computing (Magana & Silva Coutinho, 2017; Xie,

Schimpf, Chao, Nourian, & Massicotte, 2018). Simulation can link real actions of

future academic and professional work with similar learning environments and pro-

cedures (Kelly, Forber, Conlon, Roche, & Stasa, 2014). In some academic pro-

grammes, simulation is used as an alternative for industry placement (Rochester et

al., 2012). Because of these advantages, researchers and education practitioners

have expanded their knowledge of simulation from the purely technological charac-

teristics to thinking about using technology to teach technology (Harder, 2009; Oli-

veira et al., 2019). As a result, the need for understanding simulation-based

educational activities and best practice has been established (Rystedt & Sjoblom,

2012). However, individual aspects of the learning and teaching of simulation, and

their interweaving relationships, in programming education are still under-

researched.

Can simulation improve programming skills?

The use of simulation in formal education has been in existence for more than

200 years and the approach has been applied widely in medical, aviation and mari-

time courses (Woolley, 2009; Wyatt, Archer, & Fallows, 2007). Presently, there is a

greater use of simulation in business and education disciplines (Chini, Straub, &

Thomas, 2016). Ironically, engineering, more specifically computing education, has

not been at the forefront of simulation-based teaching.

There are disciplinary divides in traditional higher education practices because of

unique academic objectives and learnings cultures of different academic pro-

grammes (Knotts, Henderson, Davidson, & Swain, 2009). As a result, the meaning

and applications of simulation are diverse and, in many cases, dissimilar in differ-

ent disciplines. Despite differences in understanding the construct and its applica-

tions, simulation has shown success in creating engaged and meaningful learning

environments in various academic fields. Examples include, Patient Simulators in

nursing education (Wyatt et al., 2007), Mini Simulators in supply chain courses

(Yahaya, Mustapha, Jaffar, Talip, & Hassan, 2017), and TeachLivE simulators in

teacher development (Chini et al., 2016; Dieker, Straub, Hughes, Hynes, & Hardin,

2014). Evidence of enhanced student learning experiences in these disciplines indi-

cates potential advantages for simulation-based programming education in

computing.

In engineering, simulation broadly refers to a technological device or model which

can facilitate elements of reality for supplying practical experiences and learning en-

hancement (McGaghie, Issenberg, Petrusa, & Scalese, 2010). With many creative and

interactive features, simulation-based programming education promises a great deal of

benefits, for example self-directed and specialised learning content (Bryan, Kreuter, &

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 2 of 21



Brownson, 2009); ‘learning by doing’, the approach that follows Kolb’s experiential

learning model (Kolb, 1984); and conscious and repetitive practice which can help gain

mastery of certain technical skills (Sawyer et al., 2011).

Traditional vs simulation-based programming education: an overview

Creating a computer programme generally follows the process of code writing to enable

the computer to carry out specific tasks. This process involves code writers’ understand-

ing of language, procedural steps and the computer, hence, the importance of high-level

languages. Commonly, problems of code writing arise from the lack of a shared under-

standing of language syntaxes and language semantics, whether this is high- or low-level

language, using the code editor called the Integrated Development Environment (IDE).

Therefore, the code writing process is prone to semantic and syntax errors, making it a

complex task for programmers, particularly the novices. In recent years, the traditional

ways of completing programme codes with a code editor has become easier due to several

supporting features, such as debugger, colour-coding, code-lining and syntax error high-

lights. However, a simulation environment for code writing enables further steps, such as

error notification, suggestive corrections, visual display of steps and data processing. For

instance, in this research, the simulation work was based on the use of Web programming

that entails client and server-side technologies i.e. codes are designed to perform tasks on

both client and server sides. A high-level programming language, PHP (acronym for

Hypertext Preprocessor) was adopted for writing codes and various concepts including

database communication, server-side scripting, data format, SQL (Structured Query Lan-

guage) injections and web services.

A significant difference between the traditional and simulation-based environments is

the visual representation of activities from the front end to the back-end i.e., both on

the client and the server sides. Traditionally, IDEs for code writing using PHP do not

provide a clear understanding regarding how and what transpires i.e., what action a

specific line of code is carrying out and how data move from one end to the other. This

process is more transparent in simulation-based teaching.

By acknowledging the unique features of programming simulation, this study ex-

plored the perceptions of the lecturers and students about their learning experiences

and technical know-how related to simulation-based programming. The students were

tasked with undertaking similar concepts to those commonly taught in any traditional

higher education programming modules.

So, what is the problem?

Researchers have discussed various educational aspects of programming, such as the in-

fluence of learning culture (Sharma & Shen, 2018), roles of student engagement and

teaching (White, 2017), and the creativity and applied features of pedagogies (Kujansuu &

Tapio, 2004). Additionally, simulation techniques, and associated algorithm or complete

programme animation have been explored from a design point of view, as well as on the

use of simulation as a demonstration tool in education (Korhonen, 2003; Makransky,

Thisgaard, & Gadegaard, 2016). In this connection, several support systems have been

proposed to improve programming education, but still various learning-related difficulties

are reported by users (Gomes & Mendes, 2007). However, a detailed discussion on

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 3 of 21



programming pedagogy in simulation environments has not developed in the literature al-

though programming simulation involves distinct subject matter and unique educational

approaches. Therefore, a comprehensive understanding of the learning environment as

well as the role of lecturers and students is important to address the pedagogic difficulties

and suggest solutions accordingly.

In simulation-based teaching, curricular content is generally integrated for providing

standardised practical learning experiences (Gonczi, 2013; Park, 2016). This approach

offers collaborative and supportive learning opportunities for imitating risky actions in

a safe and corrective learning environment (Jeffries, 2012). However, simulation itself

cannot lead to effective learning if the design and facilitation are not properly con-

ducted (Dieckmann, 2009; Kelly, Hopwood, Rooney, & Boud, 2016). Pedagogical bar-

riers, for example lack of study resources, inadequate teaching preparation and

professional development, and teachers’ lack of simulation experience may hamper the

success of the learning and teaching (Hayden, 2010). There is also a gap of theoretical

understanding about how simulation contributes to learning (Bland, Topping, & Wood,

2011). Moreover, it is not very clear how a technological device or model assists trans-

parent and systematic simulation procedures (Tun, Alinier, Tang, & Kneebone, 2015).

Therefore, it is essential to discuss the concepts of simulation linked to educational

principles. It is also important to balance the teaching-focused and learning-focused

theoretical explanations (Kaakinen & Arwood, 2009). Hence, we need a rigorous dis-

cussion of simulation-based pedagogy, particularly its relevance, challenges and the

solutions.

Scope of exploring simulation-based programming pedagogy
Programming students require higher levels of creativity and imagination as well as con-

crete understanding of functional procedures in computing (Ma, Ferguson, Roper, &

Wood, 2011; Tuomi, Multisilta, Saarikoski, & Suominen, 2018). In this regard, a substan-

tial level of attention, engagement and understanding is vital (Craft, Chappell, & Twining,

2008; Kujansuu & Tapio, 2004). According to research findings, these cognitive and be-

havioural features are influenced and developed by teaching approaches, the relationship

between teachers and students, and the physical environments and resources (Davies et

al., 2013). Therefore, to design and implement effective programming education, it is im-

portant to explore what pedagogical approaches impact positively on students’ program-

ming related competences, and how they influence the change process within the learning

conditions.

Emerging educational concepts

Generally, inquiry and multiple perspectives in formal education are expected to facilitate

authentic learning (Tong, Standen, & Sotiriou, M. (Eds.)., 2018; Lombardi, 2007). The

learning process also needs to be resource rich in terms of students’ time and effort; and

real-world relevant, for example connected with their future profession and work (Black-

more, 2009). Additionally, there is a strong role of students’ prior knowledge and skills,

such as known concepts, learning expectations and learning strategies on their academic

achievements (Nasir & Hand, 2006; Schmidt, Rothgangel, & Grube, 2017; Schoenfeld,

1999). In science education, maintaining connections and consistency of tasks is an

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 4 of 21



important requirement (Sikorski & Hammer, 2017). The current literature on computing,

programming and simulation related pedagogy highlights strengths of collaborative,

flipped, and cognitive apprenticeship-based educational models.

Collaboration

Programming and coding are considered as digital humanities and software-as-art,

which demand co-creation of ideas and shared learning (Blackwell, McLean, Noble, &

Rohrhuber, 2014). Generally, in engineering, collaboration is treated as an essential

strategy and enabler for enriching students’ learning capabilities as well as generating

diverse engineering outputs (Martin-Gutierrez, Fabiani, Benesova, Meneses, & Mora,

2015). Therefore, it is important to involve collective notions in programming designs

by allowing students to share critical minds and creative ideas.

It has been established by research that participatory simulation can engage students

through collaboration and problem solving amongst other characteristics of the learn-

ing (Colella, 2000). However, the goals of programming involve independent accom-

plishments as well as the ability to work in team. This educational objective is unique

because some academic disciplines emphasise more on frequent collaboration by stu-

dents for achieving meaningful learning.

Collaboration is essential in programming education for various reasons. For ex-

ample, programming is a flexible and creative academic subject which encourages stu-

dents to follow different design procedures and application purposes while undertaking

the same task. However, simulation sessions create a unique learning and teaching en-

vironment where students may not find traditional collaboration and group activities

supportive to this type of learning, mainly because of the over dominance of the virtual

environment.

Flipped approach

Flipped Classroom is comparatively a modern learning and teaching approach that ex-

pands students’ individual learning space through the inclusion of pre- and post-group

learning practices (Flipped Learning Network, 2014; Bergmann & Sams, 2012). This

educational model is built on the core idea of utilising students’ prior knowledge which

they can apply in face to face academic sessions through active learning activities with

ongoing support by faculty members (Latulipe, Rorrer, & Long, 2018). There is an

emerging trend in using partial or full flipped approach in computing education (San-

ders, Boustedt, Eckerdal, McCartney, & Zander, 2017).

In flipped classes, the teaching and learning of regular academic sessions are deter-

mined by some pre-session learning activities (Karabulut-Ilgu, Jaramillo Cherrez, & Jah-

ren, 2018). Students gain prior knowledge through accessible educational materials,

such as readings, videos, and online lectures. Flipped classes can save time for deeper

interactions between teachers and students in class; can provide flexible learning op-

portunities to students, and more opportunities for teachers to provide feedback on

students’ performances (Karaca & Ocak, 2017; Tucker, 2012). However, the approach

may contain limitations, such as lack of student input and weak classroom teaching, if

the instructional plans are not properly designed and implemented (Chen & Chen,

2014). Research findings suggest that flipped approach is more effective in computing

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 5 of 21



education when students learn collaboratively and use social interactions in the process

(Latulipe, Long, & Seminario, 2015).

Cognitive apprenticeship model

Programming involves dynamic actions, more specifically practical and often independ-

ent problem-solving skills (Gomes & Mendes, 2007). Apprenticeship model is one ap-

proach which can help students solve problems in programming sessions by using

expanded ‘vision of expertise’ and particular skills suitable in changed situations (Mor-

ley, 2018).

Traditionally, in an apprenticeship model, a teacher or an expert demonstrates to

learners or trainee practitioners how a task can be accomplished, and then helps them

do similar tasks by themselves. Contemporary apprenticeships offer wider educational

opportunities as they suggest expanding the interaction and collaboration among peers

and communities (Eraut, 2004; Morley, 2016). The process is generally observable, and

it prepares students with specialised learning skills (Donaldson, 2015).

Cognitive apprenticeship, a modern and extended apprenticeship approach, involves

critical analysis and systematic reflections in the teaching and learning where students

gradually transform from observers to skilled performers (Collins, 2006; Collins, Brown,

& Newman, 1989). This approach encourages students to gain diverse learning experi-

ences through a variety of complex assignments (Dennen & Burner, 2008). Previous

work, for example Olsson, Mozelius & Collin (2015), evidenced that programming con-

cepts are easily comprehended by learners through various channels of visualisation. As

a result, learners can demonstrate substantive control and understanding of improved

participation with the use of visual tools.

The focus of the apprenticeship approach is generally to support the individual devel-

opment of learners through improving occupational skills (Fuller & Unwin, 2011). An

apprenticeship approach can help lecturers communicate these complex tasks more ef-

ficiently through demonstrations (MacLellan, 2017). It can also expand their capacity to

enhance students’ confidence and programming expertise by ensuring informed and

immediate support during the task progression. While following a cognitive apprentice-

ship approach, lecturers may support students through providing practical exercises

and real-time feedback (Crick, Davenport, & Hayes, 2015).

The starting point

Simulation-based programming sessions contain unique educational objectives as well as

experiential, repetitive and self-directed learning procedures. Therefore, the teaching prin-

ciples and approaches for such learning environment need to be considered carefully.

However, discussions on simulation-based programming education are very limited, thus

effective teaching guidelines for this type of academic programme are not available in the

literature. The studies in this field are mainly centred on the design of simulators and stu-

dents’ comprehension of the taught concepts, particularly in areas of computer architec-

ture and assembly language (Nova, Ferreira, & Araujo, 2013; Topaloglu & Gurdal, 2010).

In addition to this, there are a few studies on student learning dynamics, for example, stu-

dents’ learning behaviours by Suzuki, Hirokawa, Mukoyama, Uehara, and Ogata (2016).

Additionally, for the last three decades, there has been a development of discussion on

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 6 of 21



the use of visual algorithm simulation (TRAKLA), a graphical manipulation tool, for pro-

viding learning improvement through digital assessment over traditional pen and paper

approach (Hyvonen & Malmi, 1993; Korhonen & Malmi, 2000). TRAKLA2, on the other

hand, is a framework that was developed for the automatic assessment with a structured

schema for new programming exercises (Malmi et al., 2004). Generally, these visual algo-

rithm simulation systems address assessment activities based on electronic feedback tech-

niques such as integrated chats, email and discussion groups. Eventually, the human

factors (human elements in teaching and learning) as well as the elements of educational

environment and associated learning processes have not been extensively explored. Simi-

larly, the psychology of the visualisation of live code in programming is also under-

investigated, thus learning processes in the simulation environment and the role of lec-

turers as facilitators are not well-explained (Aleksic & Ivanovic, 2016; McLean, Griffiths,

Collins, & Wiggins, 2010. Therefore, exploring effective teaching principles and their ap-

plication guidelines in programming simulation may add value to this particular area of

computing education.

The findings of our previous research (Isiaq & Jamil, 2018) indicated a strong rela-

tionship between behavioural, cognitive and emotional dimensions of student engage-

ment in simulation-based programming sessions. We found simulation capable of

facilitating personalised learning, engagement and links between learning content and

students’ future work and profession. The findings also revealed stronger collaboration

and focus on learning goals in simulation sessions compared to traditional sessions.

However, the study showed the need for more cognitively challenging tasks for students

to accomplish meaningful learning. The key lesson we learned is that the use of simula-

tion for delivering programming sessions becomes more effective when the pedagogical

activities involve a balanced intervention of behavioural, emotional and cognitive exer-

cises. This has encouraged us to study feasible approaches to designing and implement-

ing suitable pedagogical activities which can ensure a balance in the learning and

teaching. Our current research in this article builds on these insights. We wanted to ex-

plore the perceptions of students and lecturers for understanding the educational situa-

tions as well as the associated challenges and advantages of simulation-based

programming sessions. Our expectation was that the findings would generate a rich

pedagogical discussion by amalgamating diverse experiences and perceptions of the key

stakeholders of programming education.

Research questions

This study had a specific focus on pedagogical aspects including teaching preparation,

content delivery approaches, and learning-related challenges in simulation-based pro-

gramming education. We captured different experiences and perceptions of lecturers

and students through investigating the following four research questions:

(i) How do the students perceive the learning environment and the teaching in

simulation-based programming sessions?

(ii) What are the pedagogical benefits and challenges for lecturers in teaching

programming using simulation?

(iii)How do the lecturers prepare for simulation-based programming teaching?

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 7 of 21



(iv)To what extent are the perceptions of the students and lecturers directed towards

best teaching practices for simulation-based programming education?

The study
In this research, we followed the qualitative methodology of investigation. The approach

was appropriate because it has the capacity to provide in-depth explanations of any unex-

plored areas (Creswell, 2006). For data collection, we used focus group and semi-

structured interviews. The methods are suitable for drawing detailed opinions and experi-

ences of research participants through reinforcing and challenging their responses (Stew-

art & Shamdasani, 2014). Moreover, the interviews were semi-structured, allowing the

interviewers options to improvise and extend questions to clarify the answers.

Thirty-seven students and four lecturers from a second-year computing course in a

British university participated in the study. The course contained a series of traditional

and simulation-based programming sessions for around 6 months. The participation of

the students and lecturers was entirely voluntary. The number of students who attended

the focus groups was more than half of the total students participating in the course. Four

lecturers had experience of delivering both traditional and simulation-based programming

courses, and we interviewed all of them. We obtained ethical approval from the university

before collecting data, and all participants gave informed consent in writing prior to at-

tending a focus group or interview session. The students and lecturers shared their obser-

vations and opinions based on personal experiences, therefore the data were valid and

related to their experience and our research questions.

Data collection techniques

The students attended five focus group sessions, each containing four to nine partici-

pants and lasting for about 30 minutes. The discussion topics were mainly on

simulation-based learning activities that had accelerated or hindered their academic

performances in the programming sessions. Additionally, the students shared opinions

on the roles of their peers and lecturers in such learning environments. Examples of

the focus group questions include, ‘Did the lecturers play any role for you in cross

scripting?’, ‘You have said how teachers can engage you, but how can you be engaged?’,

‘What makes you inattentive in programming classes and less engaged?’, and ‘What was

the role of your classmates in that session?’ The questions created opportunities for the

students to share personal observations and reflections as mature scholars in a co-

operative and non-threating environment. As a result, the information of the focus

groups was generally shared, complementary and negotiated.

The interview participants were engaged through purposive sampling (Patton, 2005).

This technique was suitable because we needed to explore views of those faculty mem-

bers who had taught programming in both traditional and simulation environments.

The lecturers attended individual and face-to-face interview sessions (except one, which

was done via Skype) lasting between 20 to 30 minutes each. The interviews were semi-

structured, and the questions mainly covered pedagogical issues, such as lesson prepar-

ation and teaching techniques. Examples of the interview questions include, ‘How do

you prepare the delivery of a simulation-based programming lesson?’ and ‘What chal-

lenges do your students face while participating in your programming classes?’ In the

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 8 of 21



third interview, a trend of speech saturation emerged as the lecturer started repeating

several points which the previous lecturers had discussed in their answers. It is plaus-

ible that the key reasons for such recurrence of data at that stage were the limited

number of interview questions, and their specific focus on learning and teaching as-

pects only. The fourth lecturer contained a high proportion of speech saturation con-

firming the adequacy of the interview data for this study.

Data processing and analysis procedures

Both the focus group and interview sessions were audio-recorded and transcribed ver-

batim by a professional transcriber. We used qualitative data processing software

NVivo to categorise student and teacher responses in several thematic areas, such as

learning environments, teaching preparation, and student engagement (see Section 4).

We used thematic analysis to discuss these categories in two broad areas: student expe-

riences and perceptions (see Section 4.1), and lecturers’ experiences and perceptions

(see Section 4.2). Then, we cross-evaluated the two circles of narration, and linked

them with educational theories for achieving a critical understanding (see Section 5).

This data triangulation provided richer perspectives of simulation-based teaching of

programming and the impacts of the approach on students’ participation and learning

(Johnson, Onwuegbuzie, & Turner, 2007; Teddlie & Tashakkori, 2009). While process-

ing the focus group data, we did not try to locate individual respondents because the

sessions together contained a comparatively high number of students. Besides, it was

not possible to identify exact students based on their voice in the audio recordings.

Moreover, we only needed to analyse similarities and differences between the students’

responses for gaining a general description of their experiences and perceptions, thus

code naming for these data was not necessary. However, while processing and present-

ing the interview data, we used code names, namely Paul, John, Richard and Joseph for

four interviewee lecturers. This helped us understand the common ground and diver-

gence of perceptions among faculty members of the same academic programme which

is common in the education sector at all levels. The code naming also ensured confi-

dentiality and anonymity of the interviewees.

Findings
The two sets of data individually and together constructed a useful interpretation of the

learning and teaching of programming using simulation. The findings identified several

enabling and challenging factors ('Learning perspectives' and 'Teaching perspectives' sec-

tions), which helped achieve useful pedagogical principles and their application guidelines

for this academic subject ('Analysis of findings' section).

Learning perspectives: students’ experiences and perceptions

The students shared both enabling and challenging features of simulation-based pro-

gramming learning. On the one hand, they described engagement, visualisation and

consistency of learning procedures as empowering factors. On the other, they ques-

tioned the feasibility of collaborative tasks, and considered the shifting between virtual

and physical educational environments a challenge. The following themes summarise

their experiences and reflect their perceptions.

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 9 of 21



Engagement and consistency are major learning catalysts

The students indicated the need for active engagement and participation for accom-

plishing meaningful learning of programming. One important pre-condition they con-

sidered is the provision of cognitively challenging tasks.

… they (lecturers) start from the beginning. I think, some students already did

some units about database before, so maybe you can get some uses and go to

the next level.

It was like there are different levels (of students) studying database and it was

from the beginning, and I was a little bit bored. I think it was so simple, I

wasn’t engaged at all…

The students also placed an emphasis on ensuring consistent pedagogical progres-

sion. Some students found the beginning phase problematic as they felt unprepared,

particularly with essential programming concepts.

…they (students) haven’t studied the concept before and they don’t have solid

knowledge, they get lost so easy… sometimes they do not get everything …

This finding evidences the importance of prior knowledge marrying the new know-

ledge intended. Therefore, a progressive act of teaching appears to be essential in simu-

lation sessions.

Linking between the ‘environments’ enhances students’ confidence

The learning environments of simulation and traditional sessions are apparently

similar as students in both settings sit in front of computers and write program-

ming codes. In simulation sessions, the students concurrently dealt with two learn-

ing environments, physical and virtual. On one hand, in the classroom or physical

environment, they were connected with the peers and lecturers through task expla-

nations, questioning and problem-solving activities. The space and facilities of the

classroom also influenced the level of their engagement or dis-engagement, particu-

larly given the fact that engagement is not restricted to the rational and analytical

but has emotional and other dimensions. As student engagement is multi-faceted,

the following example shows how some flexibility in the sessions influenced the

learning of students:

… in the first class you could bring drinks in there, basically to feel comfortable, so

you can learn in the most comfortable way.

On the other hand, simulation sessions also attracted the students in a virtual envir-

onment leading to working more independently using an intuitive and interactive simu-

lation tool. Learning within the two environments required reciprocal communication

and understanding by students and lecturers. Students mentioned that there was a hin-

drance to learning when they encountered problems and faced difficulties in translating

those problems to the lecturers who were outside of the virtual environment. Lecturers

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 10 of 21



were remote or removed from the virtual process in simulation-based learning causing

a shift between environments (virtual and physical).

[Learning hampered] … as tutor didn’t interact too much with us … he was like-

we’re doing the work, and he would come to see whether we are doing alright with

the task, or just we’re sitting there.

In connection to this, students suggested the simulator should have a synchronous

monitoring system through which the lecturers could access the virtual learning envi-

ronments of students and the works in progress. These can minimise frequent cross-

migration between environments and thus improve the quality of lecturer-student

interaction.

It would be much better if he (the lecturer) could explain from his computer and

show how it’s working, and then it would be like probably better to do it with us and

then ask us to do it alone.

Collaboration is not always feasible

Collaborative and shared learning approaches, for example group discussions and team

projects, are important for ensuring pedagogical excellence in computing (Sentance &

Csizmadia, 2017). However, the students generally found it unsuitable for simulation

sessions and thus preferred working alone.

… all I’m gonna do is work on the problem sheet, so I might as well do it at the

comfort of my own…

… there isn’t much group work, it’s just individuals doing those tasks and things like

that; so, yeah you feel like I’m gonna put my headphones on and start to listen to

music and don’t worry about others … it’s just you, yourself and the computer.

Although the students preferred to learn alone in simulation sessions, they did not under-

mine the advantages of collaboration. They mentioned that the occasional support from

their peers and lecturers ‘promoted a lot of camaraderie between them’. Some students also

expressed the need of a communication platform, an alternative approach to collaboration,

for sharing and consulting with their lecturers and classmates while completing tasks.

Demonstration and visual presentations are effective preparation tools

The students understood programming actions and processes better when the lecturers

explained the relevant application areas and possible outcomes. In this connection, the

students found demonstration a useful task for preparatory learning and engagement in

the simulation environment.

With xx (the lecturer) it was like visual examples- how to do it yourself and then we

were asked, to do- to perform the task; and for me this was better because watching

how he’s doing like the task I think made it, built in the logic in there, and how I’m

going to do it, and how the method he used to finish the task really helped me to

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 11 of 21



visualise. I feel more confident with going into a task rather than like reading

something and trying to figure out the stuff myself.

Demos, questions, going through a working example before we have to do the work,

so we know what the goal is, which is a great thing to keep engaged.

It was a first unit about web development, you don’t know anything, so you need

some like guide, after that you don’t need it because you can learn it by yourself, at

the beginning you absolutely need it.

The students also mentioned the demands of clear goal setting, provision of

questioning, and quick problem-solving support from the peers and lecturers. How-

ever, they did not expect ‘spoon feeding’ in the learning process rather wanted a

degree of autonomy with the facility of occasional and quick support from the

peers and lecturers.

There’s couple of things with the programming every now and then where you think

the task you’re about to take is going to be incredibly daunting, and then when

explained properly and well, it goes actually that’s really easy, you know and then

you get it really fast, and then applying it to other situations then again it also

becomes easy, but when it’s not explained there is just no way.

Teaching perspectives: lecturers’ experiences and perceptions

The lecturers reflected on a number of teaching aspects regarding the simulation ses-

sions. Their opinions not only covered the features of teaching, they also provided crit-

ical observations on students’ learning experiences. In presenting the findings below,

we have used pseudonyms to refer to the lecturers.

Teaching is less-challenging in simulation-based sessions

The lecturers expressed an overall satisfaction about using simulation for teaching

programming. They did not report any resistance from the students, rather men-

tioned they were more engaged and motivated in simulation sessions compared to

traditional programming sessions.

I have not noticed or seen any student complaining that they don’t like simulation

classes, but I’ve noticed, I’ve had instances, where students will say they don’t like

traditional classes, maybe they don’t understand, but with simulator they find it a lot

easier to understand ... (Richard).

Richard also stated that the students ‘want to see what is going to happen and how

things actually work’ (Richard). In this regard, John referred to various visual features

of simulation sessions and claimed the element as the key reason for the students’

higher engagement and participation.

I feel it’s easier in terms of pictorial aspect and seeing things, actually like working

the way you are explaining them... (John).

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 12 of 21



Although the lecturers generally showed a positive attitude towards simulation-based

teaching, they did not consider the approach entirely free from challenges. Paul and Rich-

ard mentioned the following two difficulties mainly associated with technological

applications.

… when there’s problem with the software itself or the network, or the simulator is

not properly explaining what they should know, then you will see quite a few

challenges (Paul).

... obviously there will be some bugs as well and you only notice most of the bugs

when you use them. ... the challenge is if there’s any problem, they (students) get

infuriated and evidently that can obstruct their learning (Richard).

The lecturers also found a lack of standardisation in the learning tasks and simulation

designs in online and offline environments. In this regard, they emphasised addressing

the needs and preferences of students.

I think when you can test it in multiple environments, you’re not reliant on a

particular piece of hardware that can go wrong. I’m certainly a fan of web-based sim-

ulators, you know other simulators may involve installation and not particularly

friendly. This wouldn’t really work in the way that students need to work these days

which is online…(Joseph).

There is a potential risk of students’ attention diversion

The lecturers’ descriptions of simulation-aided programming activities depicted a process-

oriented and visual learning journey. Simulation places an emphasis on the understanding

of programming steps which can help students execute similar tasks in a non-simulation

environment, as Joseph ascertained,

.... simulation shows you everything, it does all the way through there, you can rely

on that a little bit too much rather than actually trying to think about getting your

code right to start with or thinking how you would fix the problem if you don’t have

the simulator (Joseph).

Although the programming stages and processes can be observed through using

simulation, the lecturers anticipated that these rigorous process descriptions may make

the students over reliant on the simulator. According to John, this could result in ineffi-

ciency when doing programming in non-simulation environment.

… the students are often more attracted to the simulator itself so that caught the

attention and that will then lead it into what they actually needed to know… they

(students) were more reliant on the simulator than the class procedures and lesson

instructions… (John).

The lecturers observed that some students were extremely engaged in the virtual envir-

onment and thus could not even link with classroom activities. Joseph shared an instance

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 13 of 21



of a student’s distraction: ‘look at the problem worksheets, you know you’re allowed but

the student was so detached to instruction and only wanted to get it all virtually’ (Joseph).

Technological challenges override teaching preparation

Simulation-based programming sessions were in a face-to-face class environment with ap-

propriate computer facilities. The sessions included students’ individual and hands-on

programming practices supported by lecturers’ verbal instructions, brief demonstrations

and feedback on student work. While the sessions combined varied learning and teaching

activities, the lecturers mainly mentioned technological aspects when describing chal-

lenges in his teaching. The following statement of Richard evidences this aspect.

In terms of delivery, majorly technology related problems are the only thing we’ve

noticed so far. I have not noticed, or I have not seen any student complain that they

don’t like the simulator (Richard).

Similarly, John’s preparation for simulation sessions included some minor modifica-

tions of simulation-based worksheets and checking if ‘a specific platform topic [for the

session] is actually in place from the student end as well as the lecturer end’ (John).

The interview data showed the lecturers’ indifference about non-technological issues of

teaching, for example instructional procedures and preparation activities. Therefore,

the need for pedagogical preparation was not generally acknowledged and the lecturers,

such as Richard and John, only considered the technological side of teaching.

... preparation involves you having to have a look at the simulator to make sure things

are actually working well so one of the main things you want to look at in it would be

the connection to the internet for instance... So, make sure the simulator works both

from the back end, from the lecturer end as well as the student end... (Richard).

We design the worksheet for simulation-based activity, which is different from the

traditional style. Initially, the worksheets were written in a certain way, I’ve had to

re-write them to take advantage of using simulator (John).

Feedback needs to be personalised and immediate

Programming is a step-by-step process where a single error at any stage leads to failure

of the entire programming design. Therefore, assisting students while they are doing

programming or coding requires close monitoring of the individual programming tasks

and the progression pathways. This also helps the lecturers recognise students’ difficul-

ties and inquiries while executing the programming tasks, as Joseph described,

…you can put all these tools in front of the students, until they really understand

what they’re looking at, they are just pressing a few buttons. They’ve seen this button

that makes it run, so I’m often standing over students so with the simulator, and it’s

going line by line... (Joseph).

As a general rule, students decide and use coding actions from multiple options which

make their programming designs and outputs different from each other. In simulation

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 14 of 21



sessions, when students raise problems linked to their individualised programming pro-

cesses, the variances of programming design and procedure sometimes confuse the lec-

turers in perceiving the meaning of the students’ inquiries.

… sometimes people can ask questions where you think that they have mastered

everything or mastered what they’d done in the class, and yet then again later on you

see them and I mean we got one guy at the moment who comes in and asks the

most insanely complicated questions... (John).

Therefore, to overcome the complexities of understanding students’ difficulties prop-

erly, the lecturers mentioned the need for reviewing students’ programming actions

and processes. They also emphasised the importance of giving immediate feedback on

the inquiries so that the students do not progress in an incorrect direction. However,

because of the mixed programming backgrounds of the students, sometimes the lec-

turers were unable to assume the nature and depth of the students’ difficulties.

.. it’s difficult to totally assess something because when you think you’re being asked,

you know clever intelligent questions, but still people may not know the basics on

the back end... (Joseph).

To understand students’ difficulties in simulation-based programming, Paul followed

an explanatory approach where he asked students to explain their programming pro-

cesses, for example, ‘what you see going on in this loop, you now try and explain it on

your own words’ (Paul). This approach not only helped the students recall and review

the process, but also helped him have an idea about the steps the students followed in

their programming design or coding.

Analysis of findings and lessons learned
The experiences and perceptions of the research participants elucidate important edu-

cational features of simulation-based programming learning and teaching. The findings

show various supportive and challenging aspects which, in the light of learning theories

and educational models, supply the following three pedagogical directions.

Address pedagogical issues in teaching preparation

Overall, the lecturers were satisfied with simulation-based teaching (see 'Teaching per-

spectives' section). Conversely, the students experienced some challenges, such as lack

of consistency in teaching and the need to get immediate feedback while conducting

programming tasks (see ‘Learning perspectives’ section). These slightly contrasting find-

ings suggest revisiting existing teaching plans and their implementation procedures,

even though the learning environment seems to function adequately.

In terms of teaching preparation, the lecturers were mainly concerned about the diffi-

culties related to technology, more specifically the simulator. However, several non-

technological issues, for example task selection, instructional procedures, and assess-

ment techniques emerged in the focus group and interview data. The findings suggest

that lecturers need to address pedagogical issues in simulation sessions in equal meas-

ure as technological aspects.

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 15 of 21



The study shows the need for maintaining connections and consistency of tasks in

teaching, which is generally an important requirement in science education (see Sikor-

ski & Hammer, 2017; in ‘Emerging educational concepts’ section). Consistency in

simulation-based programming sessions is hampered by unbalanced learning activities,

for example when there are too difficult or too easy tasks in different periods of a

course. This problem with the learning content can be minimised by incorporating ap-

propriately challenging learning activities across the course. To engage the students ef-

fectively, it is also important to keep a proper balance of cognitive, behavioural and

emotional tasks; for example complex coding, time-demanding assignment, and prac-

tical programming design for future professional work. However, for designing suitable

tasks, lecturers need to take account of students’ level of competency and prior know-

ledge (see Schmidt et al., 2017; Nasir & Hand, 2006; and Schoenfeld, 1999 in ‘Emerging

educational concepts’ section). In this regard, a pre-course assessment of programming

competencies may help lecturers understand the baseline knowledge and skills of their

student groups, and also decide appropriate programming tasks for them.

The study sheds light on three areas significant to helping students participate and

learn effectively.

First, it shows how best to construct an effective educational environment to maxi-

mise student learning and attainment (UKPSF, 2018). The findings indicate the feasibil-

ity of flipped approach in simulation-based programming education which can

accommodate students’ prior knowledge and allow teachers to use teaching time more

effectively (see ‘Flipped approach’ section). Second, as discussed in the findings about

students’ experiences and perceptions (see ‘Learning perspectives’ section), students

often require immediate feedback and suggestions on the difficulties they face while

conducting simulation tasks. One of the barriers here is lecturers’ reliance on simula-

tion when they are in the virtual environment, and it seems like lecturers are almost

absent as teachers. It is essential to support students promptly to avoid inaccurate first

responses as well as incorrect programming procedures (Epstein et al., 2002). For effi-

cient monitoring and speedy responses to students’ difficulties, co- or team teaching

and peer observation by students may be effective (Shaffer & Thomas-Brown, 2015;

Sweigart & Landrum, 2015). Third, in terms of assigning tasks, the students felt the

need for having clear learning goals and procedures to accomplish them. This require-

ment indicates the need for standardising simulation tasks, preferably in line with pos-

sible applications in the students’ future professions.

Rethink the scope and procedures of collaboration

Collaboration is a key enabler in engineering education (see ‘Collaboration’ section). How-

ever, on the surface, collaboration got mixed reviews (see ‘Learning perspectives’ section).

On the one hand, the students found it inconvenient and ineffective during some simula-

tion activities, particularly when they were engaged in live programming tasks. In such sit-

uations, collaboration diverted their attention from the virtual to physical environment

and impacted negatively on the progression of their tasks. On the other hand, the students

found the support from lecturers and peers very helpful when they faced any difficulties.

These suggest that collaboration and support can aid students’ programming if they do

not divert their attention.

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 16 of 21



The findings of this study suggest that the implications of any collaborative activities

in simulation sessions should be evaluated carefully before their implementation. In this

regard, the lecturers can consider developing a built-in collaboration mechanism within

the simulation environment. A networked or virtual platform for peer observation of

programming tasks can provide opportunities to follow the task completion processes

which can also assist students to share ideas and solve problems more efficiently. Add-

itionally, for taking educational advantage of collaboration, lecturers may consider the

provision of pre- and post- collaborative activities using flipped approach (see ‘Flipped

approach’ section), such as programming related group planning and reflective practices

with peers on completed programming tasks.

Explore the feasibility of cognitive apprenticeships

The students and lecturers described positive experiences with cognitively challenging tasks

and visual approaches to learning (see ‘Learning perspectives’ and ‘Teaching perspectives’ sec-

tions). Students expected effective demonstration by lecturers whereas the lecturers

highlighted the need for personalised and immediate feedback for students’ effective learning.

Students also expressed the need for strong cognitive engagement, enhanced confidence in

dealing with multiple learning environments, and capabilities to reflect on their learning tasks

and progression. These features of learning and teaching suggest that cognitive apprentice-

ship pedagogy is an appropriate method for simulation-based programming education.

The cognitive apprenticeship approach (see ‘Cognitive apprenticeship model’ section)

has two key strengths which can facilitate effective simulation-based programming ses-

sions. First, programming generally involves live tasks for accomplishing defined skills

and actions transferable to future professions of the students. The core objectives of the

cognitive apprenticeship approach are the same with this goal. Second, programming

competence involves specialised computing skills and knowledge which are often tacit

and difficult to explain verbally. The lecturers mentioned this difficulty and voiced the im-

portance of providing task related detailed clarifications in simulation sessions (see

‘Teaching perspectives’ section).

Despite many educational advantages of cognitive apprenticeships (see ‘Cognitive appren-

ticeship model’ section), the lecturers of simulation-based programming may find the ap-

proach pedagogically demanding as it entails extended teaching preparation and more

contribution in teaching students from them. They may also face confrontations with their

colleagues and administrative systems while applying this apparently new pedagogical ap-

proach as the delivery of university academic programmes is often homogeneous and con-

trolled by conventions. Moreover, the same educational goals for all programmers and single

pedagogical approach in all programming sessions may not work (Guzdial, 2015), so the

apprenticeship-based teaching will need flexibility in terms of teaching styles and resources.

Overall, a carefully designed pedagogical plan will be required for implementing cognitive ap-

prenticeship teaching and learning in simulation-based programming sessions.

Conclusion
The study raises three distinct issues. First, it recognises that pedagogy is the blind-spot in

the programming education, particularly when simulation is used. Therefore, it is a

wakeup call for the computing educators to take pedagogical aspects seriously while

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 17 of 21



designing and delivering simulation-based programming sessions. Second, the study

shows the importance of understanding learning environments within and outside simula-

tion. The findings have expanded the knowledge on student engagement to the effective

styles and processes of teaching and collaborative learning in simulation environment.

Third, the art of effective learning and teaching in computer simulation sessions suggests

considering cognitive apprenticeships as a suitable educational approach where students

can learn through visual demonstrations, hands-on practice and reflections. The approach

also offers opportunities to use more cognitively challenging tasks and collaboration in

the learning process. Overall, the study shows the need for systematic pedagogical plans

as well as their careful implementation in a skills-oriented and performance-driven aca-

demic learning culture.

Although the implications of the explored pedagogical principles and procedures are

centred on programming or computing subjects, the lessons learned from this research may

have resonance for simulation practices in a wider spectrum of education. Therefore, the

findings may explain the learning and teaching issues or help identify any pedagogy-related

questions attached to simulation in the higher education context. However, this study draws

evidence from one British university only, thus it may not fully represent the diverse features

of academic environment and pedagogical practices of programming education in other

higher educational institutions. It is also possible that students from different cultural and

educational backgrounds respond to technology-enhanced approaches differently. There-

fore, further research in dissimilar educational institutions is needed to corroborate the find-

ings of this study. Particularly, more specific and in-depth inquiry can explain various

complex pedagogical areas of simulation-based programming education, for example

teacher preparation strategies and approaches to collaborative learning by students.

Acknowledgements
The authors are grateful to Professor Tansy Jessop and Dr. Nick Whitelegg of Solent University, UK, for their continuous
support and encouragement in conducting this study. The authors also like to thank Solent University’s Learning and
Teaching Institute (SLTI) for funding this research.

Declarations
We would like to confirm that the research presented in this manuscript is original and has not been published
elsewhere. To our knowledge, there is no conflict of interest to disclose and we have followed standard ethical
procedures in our study.

Authors’ contributions
MGJ planned this study, conducted the literature review, designed the data collection tools, assisted in data collection,
and led the data analysis and reporting work. SOI led the data collection work and assisted in analysing the findings.
Both authors read and approved the final manuscript.

Authors’ information
Dr. Md Golam Jamil is a Research Fellow at the Learning and Teaching Institute (SLTI) of Solent University, UK. Dr.
Sakirulai Olufemi Isiaq is a Senior Lecturer - Computing at Solent University’s School of Media Art and Technology.

Funding
Solent Learning and Teaching Institute (SLTI), Solent University, UK.

Availability of data and materials
The datasets used and analysed during the current study are available from the corresponding author on
reasonable request.

Competing interests
The authors declare that they have no competing interests in the manuscript.

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 18 of 21



Received: 7 March 2019 Accepted: 25 June 2019

References
Aleksic, V., & Ivanovic, M. (2016). Introductory programming subject in European higher education. Informatics in Education,

15(2), 163–182.
Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. ACM SIGcSE Bulletin, 39(2), 32–36.
Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Virginia: International Society

for Technology in Education (ISTE).
Blackmore, J. (2009). Academic pedagogies, quality logics and performative universities: Evaluating teaching and what

students want. Studies in Higher Education, 34(8), 857–872.
Blackwell, A., McLean, A., Noble, J., & Rohrhuber, J. (2014). Collaboration and learning through live coding (Dagstuhl seminar

13382). In Dagstuhl Reports, 3(9):130–168. Wadern: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Bland, A. J., Topping, A., & Wood, B. (2011). A concept analysis of simulation as a learning strategy in the education of

undergraduate nursing students. Nurse Education Today, 31(7), 664–670.
Bryan, R. L., Kreuter, M. W., & Brownson, R. C. (2009). Integrating adult learning principles into training for public health

practice. Health Promotion Practice, 10(4), 557–563.
Chen, H. Y. L., & Chen, N. S. (2014). Design and evaluation of a flipped course adopting the holistic flipped classroom

approach. In 2014 IEEE 14th International Conference on Advanced Learning Technologies, (pp. 627–631). Athens: IEEE.
Chini, J. J., Straub, C. L., & Thomas, K. H. (2016). Learning from avatars: Learning assistants practice physics pedagogy in a

classroom simulator. Physical Review Physics Education Research, 12(1), 010117 -1-15.
Colella, V. (2000). Participatory simulations: Building collaborative understanding through immersive dynamic modeling. The

Journal of the Learning Sciences, 9(4), 471–500.
Collins, A. (2006). Cognitive apprenticeship. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning science, (pp. 47–60).

New York: Cambridge University Press.
Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing, and

mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser, (pp. 453–494).
Hillsdale: Lawrence Erlbaum Associates.

Craft, A., Chappell, K., & Twining, P. (2008). Learners reconceptualising education: Widening participation through creative
engagement? Innovations in Education and Teaching International, 45(3), 235–245.

Creswell, J. W. (2006). Five qualitative approaches to inquiry. In J. W. Creswell & C. N. Poth (Eds.), Qualitative Inquiry and
Research Design: Choosing Among Five Approaches (pp. 53-80). Thousand Oaks: SAGE.

Crick, T., Davenport, J. H., & Hayes, A. (2015). Innovative pedagogical practices in the craft of computing. In Innovative
Pedagogies in the Disciplines. York: Higher Education Academy.

Davies, D., Jindal-Snape, D., Collier, C., Digby, R., Hay, P., & Howe, A. (2013). Creative learning environments in education - a
systematic literature review. Thinking Skills and Creativity, 8, 80–91.

Dennen, V. P., & Burner, K. J. (2008). The cognitive apprenticeship model in educational practice. In J. M. Spector, M. D. Merrill,
J. Merrienboer, & M. P. Driscoll (Eds.), Handbook of research on educational communications and technology, (pp. 425–439).
New York: Taylor & Francis.

Dieckmann, P. (2009). Simulation settings for learning in acute medical care. In P. Dieckmann (Ed.), Using simulations for
education, training and research, (pp. 40–138). Lengerich: Pabst.

Dieker, L. A., Straub, C. L., Hughes, C. E., Hynes, M. C., & Hardin, S. (2014). Learning from virtual students. Educational
Leadership, 71(8), 54–58.

Donaldson, A. L. (2015). Pre-professional training for serving children with ASD: An apprenticeship model of supervision.
Teacher Education and Special Education, 38(1), 58–70.

Epstein, M. L., Lazarus, A. D., Calvano, T. B., Matthews, K. A., Hendel, R. A., Epstein, B. B., & Brosvic, G. M. (2002). Immediate feedback
assessment technique promotes learning and corrects inaccurate first responses. The Psychological Record, 52(2), 187–201.

Eraut, M. (2004). Informal learning in the workplace. Studies in Continuing Education, 26(2), 247–273.
Flipped Learning Network. (2014). The four pillars of FLIP. Retrieved April June 5, 2019, from https://flippedlearning.org/wp-

content/uploads/2016/07/FLIP_handout_FNL_Web.pdf
Fuller, A., & Unwin, L. (2011). Apprenticeship as an evolving model of learning. Journal of Vocational Education & Training,

63(3), 261–266.
Giannakos, M. N., Pappas, I. O., Jaccheri, L., & Sampson, D. G. (2017). Understanding student retention in computer

science education: The role of environment, gains, barriers and usefulness. Education and Information Technologies,
22(5), 2365–2382.

Gomes, A., & Mendes, A. J. (2007). An environment to improve programming education. In Proceedings of the 2007
international conference on Computer systems and technologies (Article 88). Bulgaria: ACM.

Gonczi, A. (2013). Competency-based approaches: Linking theory and practice in professional education with particular
reference to health education. Educational Philosophy and Theory, 45(12), 1290–1306.

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for everyone. Synthesis Lectures
on Human-Centered Informatics, 8(6), 1–165.

Harder, B. N. (2009). Evolution of simulation use in health care education. Clinical Simulation in Nursing, 5(5), 169–172.
Hayden, J. (2010). Use of simulation in nursing education: National survey results. Journal of Nursing Regulation, 1(3), 52–57.
Hyvonen, J., & Malmi, L. (1993). TRAKLA-a system for teaching algorithms using email and a graphical editor.
Isiaq, S. O., & Jamil, M. G. (2018). Enhancing student engagement through simulation in programming sessions. The

International Journal of Information and Learning Technology, 35(2), 105–117.
Jeffries, P. R. (2012). Simulation in nursing: From conceptualization to evaluation. New York: National League for Nurses.
Jenkins, T. (2002). On the difficulty of learning to program. In Proceedings of the 3rd Annual Conference of the LTSN Centre for

Information and Computer Sciences, (vol. 4, No. 2002, pp, pp. 53–58).
Johnson, R. B., Onwuegbuzie, A. J., & Turner, L. A. (2007). Toward a definition of mixed methods research. Journal of Mixed

Methods Research, 1(2), 112–133.

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 19 of 21

https://flippedlearning.org/wp-content/uploads/2016/07/FLIP_handout_FNL_Web.pdf
https://flippedlearning.org/wp-content/uploads/2016/07/FLIP_handout_FNL_Web.pdf


Kaakinen, J., & Arwood, E. (2009). Systematic review of nursing simulation literature for use of learning theory. International
Journal of Nursing Education Scholarship, 6(1), 1-20.

Karabulut-Ilgu, A., Jaramillo Cherrez, N., & Jahren, C. T. (2018). A systematic review of research on the flipped learning method
in engineering education. British Journal of Educational Technology, 49(3), 398–411.

Karaca, C., & Ocak, M. (2017). Effect of flipped learning on cognitive load: A higher education research. Journal of Learning
and Teaching in Digital Age, 2(1), 20–27.

Kelly, M. A., Forber, J., Conlon, L., Roche, M., & Stasa, H. (2014). Empowering the registered nurses of tomorrow: Students' perspectives
of a simulation experience for recognising and managing a deteriorating patient. Nurse Education Today, 34(5), 724–729.

Kelly, M. A., Hopwood, N., Rooney, D., & Boud, D. (2016). Enhancing students' learning through simulation: Dealing with
diverse, large cohorts. Clinical Simulation in Nursing, 12(5), 171–176.

Knotts, G., Henderson, L., Davidson, R. A., & Swain, J. D. (2009). The search for authentic practice across the disciplinary divide.
College Teaching, 57(4), 188–196.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs: Prentice-Hall.
Korhonen, A. (2003). Visual Algorithm Simulation (Doctoral thesis). Helsinki: Helsinki University of Technology.
Korhonen, A., & Malmi, L. (2000). Algorithm simulation with automatic assessment. ACM SIGCSE Bulletin, 32(3), 160–163.
Kujansuu, E., & Tapio, T. (2004). Codewitz–An international project for better programming skills. In L. Cantoni & C.

McLoughlin (Eds.), In Proceedings of EdMedia: World Conference on Educational Media and Technology 2004, (pp. 2237-
2239). Waynesville: Association for the Advancement of Computing in Education (AACE).

Latulipe, C., Long, N. B., & Seminario, C. E. (2015). Structuring flipped classes with lightweight teams and gamification. In
Proceedings of the 46th ACM Technical Symposium on Computer Science Education, (pp. 392-397). Missouri: ACM.

Latulipe, C., Rorrer, A., & Long, B. (2018). Longitudinal data on flipped class effects on performance in cs1 and retention after
cs1. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education, (pp. 411-416). Baltimore: ACM.

Lombardi, M. M. (2007). Authentic learning for the 21st century: An overview. Educause learning initiative, 1(2007), 1–12.
Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011). Investigating and improving the models of programming concepts held by

novice programmers. Computer Science Education, 21(1), 57–80.
MacLellan, C. J. (2017). Computational models of human learning: Applications for tutor development, behavior prediction, and

theory testing (Doctoral thesis). Pittsburgh: Carnegie Mellon University.
Magana, A. J., & Silva Coutinho, G. (2017). Modeling and simulation practices for a computational thinking-enabled

engineering workforce. Computer Applications in Engineering Education, 25(1), 62–78.
Makransky, G., Thisgaard, M. W., & Gadegaard, H. (2016). Virtual simulations as preparation for lab exercises: Assessing learning

of key laboratory skills in microbiology and improvement of essential non-cognitive skills. PLoS One, 11(6), e0155895.
Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti, P. (2004). Visual algorithm simulation exercise system

with automatic assessment: TRAKLA2. Informatics in education, 3(2), 267.
Mann, S., & Robinson, A. (2009). Boredom in the lecture theatre: An investigation into the contributors, moderators and

outcomes of boredom amongst university students. British Educational Research Journal, 35(2), 243–258.
Martin-Gutierrez, J., Fabiani, P., Benesova, W., Meneses, M. D., & Mora, C. E. (2015). Augmented reality to promote collaborative

and autonomous learning in higher education. Computers in Human Behavior, 51, 752–761.
McGaghie, W. C., Issenberg, S. B., Petrusa, E. R., & Scalese, R. J. (2010). A critical review of simulation-based medical education

research: 2003–2009. Medical Education, 44(1), 50–63.
McLean, A., Griffiths, D., Collins, N., & Wiggins, G. A. (2010). Visualisation of live code. In Proceedings of Electronic Visualisation

and the Arts, (pp 26-30). London: Computer Arts Society.
Morley, D. A. (2016). A Grounded theory study exploring first year student nurses' learning in practice (Doctoral thesis).

Bournemouth: Bournemouth University.
Morley, D. A. (2018). The ‘ebb and Flow’of student learning on placement. In Enhancing Employability in Higher Education

through Work Based Learning, (pp. 173–190). Cham: Palgrave Macmillan.
Nasir, N. I. S., & Hand, V. M. (2006). Exploring sociocultural perspectives on race, culture, and learning. Review of Educational

Research, 76(4), 449–475.
Nova, B., Ferreira, J. C., & Araujo, A. (2013). Tool to support computer architecture teaching and learning. In 2013 1st

International Conference of the Portuguese Society for Engineering Education (CISPEE), (pp. 1-8). Porto: IEEE.
Oliveira, A., Behnagh, R. F., Ni, L., Mohsinah, A. A., Burgess, K. J., & Guo, L. (2019). Emerging technologies as pedagogical tools

for teaching and learning science: A literature review. Human Behavior and Emerging Technologies, 1(2), 149–160.
Olsson, M., Mozelius, P., & Collin, J. (2015). Visualisation and Gamification of e-Learning and Programming Education.

Electronic journal of e-learning, 13(6), 441–454.
Park, Y. S. (2016). A study on the standardization of education modules for ARPA/radar simulation. Journal of the Korean

Society of Marine Environment & Safety, 22(6), 631–638.
Patton, M. Q. (2005). Qualitative research. In B. S. Evritt & D. Howell (Eds.), Encyclopedia of statistics in behavioral science, (pp.

1631-1636). Chichester: Wiley.
QAA (2016). Subject benchmark statement UK quality code for higher education Part A: setting and maintaining

academic standards computing. Retrieved on 15 September 2018 from https://www.qaa.ac.uk/docs/qaa/subject-
benchmark-statements/sbs-computing-16.pdf?sfvrsn=26e1f781_12.

Rochester, S., Kelly, M., Disler, R., White, H., Forber, J., & Matiuk, S. (2012). Providing simulation experiences for large cohorts of
1st year nursing students: Evaluating quality and impact. Collegian, 19(3), 117–124.

Rystedt, H., & Sjoblom, B. (2012). Realism, authenticity, and learning in healthcare simulations: Rules of relevance and
irrelevance as interactive achievements. Instructional Science, 40(5), 785–798.

Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R., & Zander, C. (2017). Folk pedagogy: Nobody doesn't like active learning. In
Proceedings of the 2017 ACM Conference on International Computing Education Research, (pp. 145-154). Washington: ACM.

Sawyer, T., Sierocka-Castaneda, A., Chan, D., Berg, B., Lustik, M., & Thompson, M. (2011). Deliberate practice using simulation
improves neonatal resuscitation performance. Simulation in Healthcare, 6(6), 327–336.

Schmidt, H. K., Rothgangel, M., & Grube, D. (2017). Does prior domain-specific content knowledge influence students' recall of
arguments surrounding interdisciplinary topics? Journal of Adolescence, 61, 96–106.

Schoenfeld, A. H. (1999). Models of the teaching process. The Journal of Mathematical Behavior, 18(3), 243–261.

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 20 of 21

https://www.qaa.ac.uk/docs/qaa/subject-benchmark-statements/sbs-computing-16.pdf?sfvrsn=26e1f781_12
https://www.qaa.ac.uk/docs/qaa/subject-benchmark-statements/sbs-computing-16.pdf?sfvrsn=26e1f781_12


Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective.
Education and Information Technologies, 22(2), 469–495.

Shaffer, L., & Thomas-Brown, K. (2015). Enhancing teacher competency through co-teaching and embedded professional
development. Journal of Education and Training Studies, 3(3), 117–125.

Sharma, R., & Shen, H. (2018). Does education culture influence factors in learning programming: A comparative study between
two universities across continents. International Journal of Learning, Teaching and Educational Research, 17(2), 1-24.

Sikorski, T. R., & Hammer, D. (2017). Looking for coherence in science curriculum. Science Education, 101(6), 929–943.
Stewart, D. W., & Shamdasani, P. N. (2014). Focus groups: Theory and practice (Vol. 20). London: SAGE.
Suzuki, S. V., Hirokawa, S., Mukoyama, S., Uehara, R., & Ogata, H. (2016). Student behavior in computer simulation practices by

pair programming and flip teaching. In 24th International Conference on Computers in Education, ICCE 2016, (pp. 212-221).
Mumbai: Asia-Pacific Society for Computers in Education.

Sweigart, C. A., & Landrum, T. J. (2015). The impact of number of adults on instruction: Implications for co-teaching.
Preventing School Failure: Alternative Education for Children and Youth, 59(1), 22–29.

Teddlie, C., & Tashakkori, A. (2009). Foundations of mixed methods research: Integrating quantitative and qualitative approaches
in the social and behavioral sciences. Thousand Oaks: SAGE.

Tong, V. C., Standen, A., & Sotiriou, M. (Eds.). (2018). Shaping higher education with students: Ways to connect research and
teaching. London: UCL Press.

Topaloglu, T., & Gurdal, O. (2010). A highly interactive PC based simulator tool for teaching microprocessor architecture and
assembly language programming. Elektronika ir Elektrotechnika, 98(2), 53–58.

Tucker, B. (2012). The flipped classroom. Education next, 12(1), 82–83.
Tun, J. K., Alinier, G., Tang, J., & Kneebone, R. L. (2015). Redefining simulation fidelity for healthcare education. Simulation &

Gaming, 46(2), 159–174.
Tuomi, P., Multisilta, J., Saarikoski, P., & Suominen, J. (2018). Coding skills as a success factor for a society. Education and

Information Technologies, 23(1), 419–434.
UKPSF (2018). Dimensions of the framework. Retrieved on 20 September 2018 from https://www.heacademy.ac.uk/ukpsf
White, M. (2017). Keep calm and simulate on: Faculty experiences and insights into implementing best practices in

simulation. Teaching and Learning in Nursing, 12(1), 43–49.
Woolley, M. (2009). Time for the navy to get into the game! In US Naval Institute Proceedings, (pp. 34–39).
Wyatt, A., Archer, F., & Fallows, B. (2007). Use of simulators in teaching and learning: paramedics’ evaluation of a patient

simulator? Journal of Emergency Primary Health Care (JEPHC), 5(2), 1-16.
Xie, C., Schimpf, C., Chao, J., Nourian, S., & Massicotte, J. (2018). Learning and teaching engineering design through modeling

and simulation on a CAD platform. Computer Applications in Engineering Education, 26(4), 824–840.
Yahaya, C. K. H. C. K., Mustapha, J. C., Jaffar, J., Talip, B. A., & Hassan, M. M. (2017). Operations and supply chain mini simulator

development as a teaching aid to Enhance student's learning experience. In 7th Annual Conference on Industrial
Engineering and Operations Management, IEOM 2017, (pp. 358-367). Rabat: IEOM Society.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jamil and Isiaq International Journal of Educational Technology in Higher Education           (2019) 16:25 Page 21 of 21

https://www.heacademy.ac.uk/ukpsf

	Abstract
	Introduction
	Can simulation improve programming skills?
	Traditional vs simulation-based programming education: an overview
	So, what is the problem?

	Scope of exploring simulation-based programming pedagogy
	Emerging educational concepts
	Collaboration
	Flipped approach
	Cognitive apprenticeship model

	The starting point
	Research questions

	The study
	Data collection techniques
	Data processing and analysis procedures

	Findings
	Learning perspectives: students’ experiences and perceptions
	Engagement and consistency are major learning catalysts
	Linking between the ‘environments’ enhances students’ confidence
	Collaboration is not always feasible
	Demonstration and visual presentations are effective preparation tools

	Teaching perspectives: lecturers’ experiences and perceptions
	Teaching is less-challenging in simulation-based sessions
	There is a potential risk of students’ attention diversion
	Technological challenges override teaching preparation
	Feedback needs to be personalised and immediate


	Analysis of findings and lessons learned
	Address pedagogical issues in teaching preparation
	Rethink the scope and procedures of collaboration
	Explore the feasibility of cognitive apprenticeships

	Conclusion
	Acknowledgements
	Declarations
	Authors’ contributions
	Authors’ information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher’s Note

