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Introduction
In this section, we introduce one of the main problems that educators, learners, and 
researchers encounter in Massive open online courses (MOOCs) teaching and learning. 
Then, we clarify the significance of the study, and research purpose and research ques-
tions in relation to the problem.

The problem

Massive open online courses (MOOCs), which originated from the Open Educational 
Resources movement, have attracted much public attention, especially during the 
COVID-19 pandemic (Buchem et al., 2020; Lohr, 2020). MOOCs differ from the tradi-
tional brick-and-mortar university courses in terms of pedagogical design, open and free 
access to the learning content, a more diverse range of learner profiles, and a variety of 
learning objectives (Alario-Hoyos et  al., 2017; Gardner et  al., 2018). These differences 
raise significant challenges for the MOOC providers and designers due to the scale and 
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heterogeneity of learners. These challenges included providing efficient and effective 
feedback from the instructors, a collaborative learning environment, and flexibility of 
the personal learning schedules (Zhu et  al., 2018). A major challenge is that with the 
limited number of MOOC educators it is practically impossible to monitor the learning 
progress of millions of MOOC learners and provide them nuanced and accurate guid-
ance individually (Almatrafi et al., 2018; Galikyan et al., 2021). MOOC learners also need 
responsive and high-quality feedback to guide their self-paced learning engagement (Hu 
et al., 2021). The lack of educators’ attention and responses becomes obstacles for the 
learners to move forward (Almatrafi et al., 2018).

Asynchronous online discussion forums play a key role in assisting the participants’ 
mutual interaction through textual conversations in MOOCs. These discussion tran-
scripts can provide instructors with an understanding of learners’ critical discourse (i.e., 
knowledge construction) during the course. The Community of Inquiry (CoI) framework 
(Garrison et al., 1999) has been the most broadly used and validated for analysing educa-
tional experience in online discussions. Cognitive presence, a primary dimension of the 
CoI, focuses on the critical discourse during learning. The cognitive presence reflected 
in the discussion messages is significant evidence that students are learning domain 
knowledge (Rourke & Kanuka, 2009). Using such a framework to categorise learners’ 
discourse in online discussions is a formidable task that could be very helpful for edu-
cators to monitor students’ learning progress (Elgort et al., 2018). It is also not practi-
cal to implement the manual categorisation process in the myriad discussions to assist 
teaching and learning at scale (Kovanovic et al., 2014). A reliable and high-performing 
approach to automatically analysing cognitive presence in MOOC discussions can be 
applied in MOOC platforms as an effective tool to enhance the communication between 
the relatively small number of educators and the vast number of learners. This offers a 
potential solution to one of the major challenges of MOOCs.

The significance

Towards the goal of implementing the automatic classifiers into practical use in MOOC 
discussion forums, the automatic content analysis methods developed for the discussion 
transcripts in the small-scale courses need to be revalidated for the MOOCs. The infor-
mal writing styles are distinctive in the MOOC discussion forums compared to the for-
mal writing patterns in the for-credit courses (Hu et al., 2021). These specific linguistic 
patterns can impact the architecture and feature extraction in natural language process-
ing methods for identifying the phases of cognitive presence. Some automated and semi-
automated approaches for analysing cognitive engagement have been proposed in the 
past two decades (Barbosa et al., 2020; Corich et al., 2004; Farrow et al., 2019; Kovanović 
et  al., 2014, 2016; McKlin et  al., 2001; Waters et  al., 2015), amongst which Kovanović 
et al.’s (2016) classifier reached the state-of-the-art performance. However, these stud-
ies all concentrated on the context of the traditional, for-credit, small-scale university 
courses (called the small-scale courses for short) rather than MOOCs. Also, these previ-
ous studies worked on the discussion messages from different disciplines. The generalis-
ability of the classifiers constructed by the data sets from one domain to another requires 
to be validated, too. Besides, the explainable machine learning methods (e.g., random 
forest) can help researchers seek important indicators for each cognitive presence phase. 



Page 3 of 21Hu et al. Int J Educ Technol High Educ           (2022) 19:48 	

Researchers can refine the theoretical frameworks (i.e., the CoI) for their generalisabil-
ity and transferability in broader disciplines and learning environments based on these 
important indicators.

Purpose and the research questions

This study aims to examine and revise Kovanović et al.’s (2016) classifier to identify cog-
nitive presence phases in the discussion messages from a target MOOC. Kovanović 
et al.’s (2016) classifier applied the random forest algorithm with the features based on 
discussion structures (e.g., the depth of conversation), psychological vocabularies (e.g., 
“think”), and cohesion analysis of writing texts (e.g., the semantic relevance between two 
sentences in a message). The most important features to identify the phases of cogni-
tive presence were analysed to gain insights for further studies of cognitive presence in 
MOOCs. The best-case classifier was also validated on the sample messages of MOOCs 
from the other disciplines. Thus, our research questions were:

RQ1: To what extent can our automatic classifier accurately identify the phases of 
cognitive presence in the online discussion messages from the target MOOC?
RQ2: Which classification features can be the most important to identify each phase 
of cognitive presence according to the automatic classifier training results?
RQ3: Can the automatic classifier trained on the target MOOC potentially identify 
cognitive presence in MOOCs of the other disciplines?

Related studies
We introduce some theoretical background about the Community of Inquiry (CoI) 
framework and one of its core dimensions, cognitive presence, in this section. The prior 
studies on the automated classifiers of cognitive presence in online discussion tran-
scripts are elaborated after the theories. Also, the gaps between this research and the 
previous studies are explained at the end of the section.

The Community of Inquiry (CoI) framework and cognitive presence

The CoI framework proposed by Garrison et  al. (1999) has been most broadly cited 
for analysing learning in asynchronous online discussion forums in the past two dec-
ades. Based on the theory of social constructivism, the CoI portrays the educational 
experience occurring in a learning community where “a group of individuals who col-
laboratively engage in purposeful critical discourse and reflection to construct personal 
meaning and confirm mutual understanding” (Garrison & Anderson, 2011, p. 2). The 
CoI framework is composed of three interdependent elements, also called presences: 
(1) Cognitive presence, denotes the progressive phases of knowledge (re)construction 
and problem-solving skills (Akyol & Garrison, 2011); (2) Social presence, describes 
the development of social climate and interpersonal relationships between the partici-
pants in the learning community (Rourke et  al., 1999); (3) Teaching presence, reflects 
the instructional activities that facilitate and intervene in the construction of critical dis-
course (Garrison et al., 1999).

Since our study concentrates on the construction and facilitation of ‘critical inquiry’ 
in text-based discussion forums in MOOCs, we adopted the definition of cognitive 
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presence in the CoI framework. Cognitive presence, which is represented as a cycle of 
progressive knowledge construction (Garrison et  al., 2001), has four phases: (1) Trig-
gering event, in which participants raised their confusions and were unable to explain 
the causes explicitly; (2) Exploration, in which the participants provide information to 
explore the triggers of the confusions in the previous phase; (3) Integration, in which 
the participators proposed coherent conclusions or solutions to address the confusions 
mentioned with sufficient supporting reasons; (4) Resolution, in which the participators 
applied, tested or argued the conclusions or solutions mentioned in the former phases, 
forming new constructs. The discussion messages associated with the other two pres-
ences (i.e., social and teaching presence) and do not belong to any of the above four 
phases are classified into the Other. According to the coding-up rule, the discussion 
messages that reflect the evidence of more than one cognitive phase are categorised into 
the higher one. Table 9 in the Appendix provides message instances of the five categories 
associated with the definitions in cognitive presence.

Automated classifiers of cognitive presence in online discussion transcripts

Researchers have developed several automated classifiers using different algorithms to 
analyse the phases of cognitive presence in online discussion transcripts of the small-
scale courses. Table 1 summarises the methods, main features, and outcome metrics of 
the studies reviewed in this section.

Initially, McKlin et al. (2001) and Corich et al. (2006) applied a simple artificial neural 
network (ANN) and a Bayesian network, respectively, by using dictionary-based words 
and phrases as classification features to categorise the cognitive presence phases. McK-
lin et al.’s (2001) ANN classifier reported Holsti’s coefficient of reliability (CR) of 0.68 and 
Cohen’s κ of 0.31, while Corich et al.’s (2006) classifier reached the CR of 0.71 but with-
out any report of Cohen’s κ. These results indicated that there was still much room for 

Table 1  Summary of prior work reviewed

a,b Neto et al. (2021) contains three experiments. The first one was on a combined data set. The next two were training the 
automatic classifier on one set and testing on another, and vice versa

Studies by Algorithm Main features Best outcome metrics

Accuracy (%) Cohen’s κ

McKlin et al. (2001) Simple neural networks Dictionary-based words and 
phrases

68 0.31

Corich et al. (2006) Bayesian network Dictionary-based words and 
phrases

71 –

Kovanović et al. (2014) Support vector machine Bag-of-words, n-grams, and 
structural features

58.4 0.41

Waters et al. (2015) Conditional random fields Bag-of-words, n-grams, and 
more structural features

64.2 0.48

Kovanović et al. (2016) Random forest LIWC, Coh-Metrix, LSA, structural 
features

70.3 0.63

Neto et al. (2018) Random forest LIWC, Coh-Metrix, word embed-
dings, structural features

83 0.72

Farrow et al. (2019) Random forest Same as Kovanović et al. (2016) 61.7 0.46

Barbosa et al. (2020) Random forest Same as Kovanović et al. (2016) 67 0.32

Neto et al. (2021) Random forest Same as Kovanović et al. (2016) 76
67a

57b

0.55
0.2
0.38
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optimisation. Also, McKlin et al.’s (2001) classifier excluded the minority class, Resolu-
tion phase. Corich et al.’s (2006) classifier analysed cognitive presence based on sentence 
level rather than message level.

Subsequently, Kovanović et al. (2014) built a cognitive presence classifier by Support-
Vector-Machine algorithm with n-grams and thread structures as classification features. 
Kovanović et al.’s (2014) classifier archived an accuracy of 58.4% and Cohen’s κ of 0.41. 
By adding more structural features, Waters et  al. (2015) developed a Conditional ran-
dom fields classifier. It reached an accuracy of 64.2% and Cohen’s κ of 0.482, demonstrat-
ing the importance of the structural features for identifying cognitive presence phases in 
online discussions.

However, the limitations of the n-grams methods were (1) they built a high-dimen-
sional space that caused over-fitting problems, and (2) they led the classifier domain-
specifically so that it lacked generalisability. Also, the skewed distribution of phases of 
cognitive presence in the sample data was another problem that affected the classifier 
performance. To overcome these problems, Kovanović et al. (2016), as the state-of-the-
art method, built a random forest (RF) classifier with the features based on computa-
tional linguistics analysis by Coh-Metrix (Graesser et al., 2014) and Linguistic Inquiry 
Word Count (LIWC, Tausczik & Pennebaker, 2009), latent semantic analysis (LSA), 
name entities, and conversational structures. It also employed over-sampling techniques 
to address the class imbalance problem. It reached an accuracy of 70.3% and Cohen’s κ of 
0.63. However, the accuracy and Cohen’s κ in a replication study by Farrow et al. (2019) 
decreased to 61.7% and 0.46, pinpointing that Kovanović et al.’s (2016) approach gener-
ated an over-optimistic result since it performed the over-sampling method before the 
training-test data split.

Several revised random forests approaches were also applied in cross-language studies 
(Barbosa et al., 2020; Neto et al., 2018) which aimed to categorise the phases of cogni-
tive presence in the discussion messages written in Portuguese. Neto et al.’s (2018) study 
reported an accuracy of 83% and Cohen’s κ of 0.72, whereas Barbosa et al.’s (2020) work 
reached a lower performance, with an accuracy of 67% and Cohen’s κ of 0.32. Neto et al. 
(2021) used the revised approach to classify the phases of cognitive presence in the dis-
cussion messages combined two discipline courses, biology and technology, achieving 
an accuracy of 76% and Cohen’s κ of 0.55. They also evaluated the performance of the 
automatic model trained by the messages from one discipline on another discipline, with 
the results of Cohen’s κ below 0.4, indicating the approach was not generic enough.

Differences between the current and the prior work

There were three main differences between the current and the prior work. Firstly, the 
studies that analysed the learners’ cognitive aspects in the MOOC discussions focused 
on cognitive engagement behaviours, sentiment analysis, learners’ confusions rather 
than the phases of cognitive presence. Secondly, research in the literature that analysed 
cognitive presence manually or automatically was in the context of small-scale courses 
rather than MOOCs. Finally, the domains of the courses investigated by the reviewed 
studies were different, for instance, political and history (McKlin et al., 2001), software 
engineering (Farrow et al., 2019; Kovanović et al., 2014, 2016; Waters et al., 2015), biol-
ogy (Barbosa et al., 2020; Neto et al., 2018, 2021). It is still a doubt whether the automatic 
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classifier that was developed for a specific MOOC course can be applied to the MOOCs 
from other disciplines. The methods are discussed below to fulfil the three differences 
mentioned above.

Methods
We ran a revised application study to address the research questions introduced at the 
end of the “Introduction” section. We first describe the data sets used in the study. We 
then elaborate on the construction of the automatic classifiers by introducing the clas-
sification features used to identify phases of cognitive presence, model training and test-
ing processes, and validation of the optimal classifiers on the discussion messages of 
other disciplines.

Description of the data sets

In this study, the data set used to build the automatic classifier for phases of cognitive 
presence came from an archived offering of the Logical and Critical Thinking (LCT) 
MOOC. This introductory Philosophy MOOC was designed and taught by a course-
design team at a New Zealand university on the FutureLearn platform. This course 
taught the basic concepts of logical and critical thinking and how to build sound argu-
ments linking with daily life. The philosophy MOOC sample data was composed of 1917 
discussion messages (including threads and their comments) that we randomly selected 
from 12,311 messages generated by 1000 learners in the forums from eight weekly top-
ics. Two tasks were randomly selected from each week’s topic, and then approximately 
100 messages were randomly selected from each task to keep the sequential structure of 
a thread. Three expert coders classified the 1917 messages into five phases of cognitive 
presence (77.15% agreement, Fleiss’ κ of 0.763) independently based on a revalidated 
classification rubric for cognitive presence in MOOC (Hu et  al., 2020). The messages 
categorised in the same phase by all the three coders (1479 messages) were used to 
develop the automatic classifier in this study. Table 2 shows the proportion of messages 
within the five phases of cognitive presence in the Philosophy MOOC data set.

The data sets used for the cross-domain validation of our automatic classifier consist 
of 307 messages. They were randomly selected from 29,604 discussion messages gener-
ated from eleven Stanford University public online courses (Agrawal et al., 2015; Atapa-
ttu et al., 2019) in three disciplines (i.e., Education, Medicine and Humanities). Similarly, 

Table 2  Distribution of cognitive presence phases in the sample data from the MOOCs of 
Philosophy, Medicine, Education, and Humanities

Count = number of messages

Id Cognitive phase Philosophy set Medicine set Education set Humanities set

Count % Count % Count % Count %

0 Other 85 5.75 3 3.03 3 3.09 12 12.2

1 Triggering event 279 18.86 36 36.4 34 35.1 27 27.6

2 Exploration 835 56.46 43 43.4 44 45.4 41 41.8

3 Integration 244 16.50 16 16.2 10 10.3 16 16.3

4 Resolution 36 2.43 1 1.01 6 6.19 2 2.04
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a sample of approximately 100 messages (i.e., posts and their replies) was selected: 103, 
102 and 102 messages for Education, Medicine, and humanity courses, respectively. 
Two expert coders independently classified the 307 messages into five phases of cogni-
tive presence, according to Hu et al.’s (2020) rubric. They reached an overall percentage 
agreement of 95.8% and Cohen’s κ of 0.938 (307 messages). Across the three disciplines, 
Education, Medicine, and Humanities, the percentage agreements were 96.1%, 95.1%, 
and 96.1%, and Cohen’s κ coefficients were 0.941, 0.926, and 0.945, respectively. Table 3 
also lists the distribution of the five cognitive phases in the messages that were catego-
rised in the same phase by both coders.

All the coders were trained over three rounds to ensure they reached an over 85% 
agreement before classifying the sample data independently. The distribution of the five 
cognitive phases accounted for a similar proportion in our four datasets, with a bulk of 
messages as Exploration phase and a negligible percentage of messages as the Other and 
Resolution phase. This similarity was also revealed in the datasets of previous studies.

Feature extraction

Four categories of 225 classification features were adopted for building the automatic 
classifier in this study, according to the features used and the analysis of their impor-
tance for identifying the phases of cognitive presence in the previous studies (Barbosa 
et al., 2020; Farrow et al., 2019; Kovanović et al., 2016; Neto et al., 2018). The categories 
contain (1) discussion contextual features, (2) linguistic features, (3) semantic similari-
ties, (4) name-entity words. We briefly explained these features and why we use them as 
below due to the word limit. Lists of the 225 features and their descriptions can be found 
in Table 10 in the Appendix.

Discussion contextual features

The discussion contextual features have been found to be significant for identifying the 
cognitive presence phases in the previous studies (Barbosa et  al., 2020; Farrow et  al., 
2020; Kovanović et al., 2016; Waters et al., 2015). Following these studies, four contextual 
features were used in this study: (1) the message depth, which represents the numeric 
position (chronological order) within a conversation; (2) the number of replies, which 
denotes the total number of replies beneath each message; (3, 4) the start or the end 
message of a thread, which is a binary number (0 or 1) to indicate whether the message is 
the start or the end of a conversation.

Table 3  Summary of the classifier performance by fine-tuning the parameters (i.e., ntree and mtry)

The bold values denote the optimal ntree and mtry values in the fine-tuning processes

Fine-tuning process ntree mtry Accuracy (SD) Cohen’s κ (SD)

With the SMOTE exact method Min 500 196 0.654 (0.034) 0.414 (0.057)

Max 1100 54 0.689 (0.043) 0.465 (0.068)

Difference 0.035 0.051

Without the SMOTE 
exact method

Min 500 2 0.659 (0.018) 0.334 (0.040)

Max 1100 94 0.694 (0.035) 0.437 (0.069)

Difference 0.035 0.103
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Linguistic features

The state-of-the-art studies (Farrow et al., 2019; Kovanović et al., 2016) have found that 
several classification features from the two computational linguistics tools, Coh-Metrix 
(Graesser et al., 2014) and LIWC (Tausczik & Pennebaker, 2009), indicated high impor-
tance to identify cognitive presence phases. Thus, we extracted linguistic features from 
these two tools.

The Coh-Metrix offers features to measure the cohesion of texts in five dimensions 
(Dowell et al., 2016; Graesser et al., 2004): (1) Narrativity measures the degree of using 
familiar topics or words, world knowledge and oral language to describe events or sto-
ries. Narrative text resembles everyday conversation. There is high correspondence with 
word familiarity. Narrative text would lie at the opposite end of a continuum with less 
familiar information in expository texts on less familiar topics. (2) Deep cohesion reveals 
the extent to which the connectives casually or logically help readers to comprehend the 
ideas expressed in the discourse. (3) Referential cohesion measures the degree to which 
the explicit ideas are tied together across the entire text. (4) Syntactic simplicity reflects 
the extent to which sentences contain fewer words and use simpler, familiar syntactic 
structures to express ideas in the text. (5) Word concreteness evaluates the degree of 
using concrete and easier words for readers to understand. Texts that evoke meaningful 
images that are easier to visualise, as opposed to abstract words about concepts that are 
difficult to visualise and therefore more difficult to understand.

The LIWC tool provides a collection of words as features that indicated various psy-
chological processes, including affective, cognitive, social and perceptual processes 
(Pennebaker et al., 2015; Tausczik & Pennebaker, 2009). The words that indicate affective 
processes describe writers’ positive and negative emotions, such as “happy”, or “nervous”. 
The cognitive process words describe how writers express insight, causation, discrep-
ancy, tentativeness, certainty, and differentiation (i.e., “think” and “consider”). The words 
related to social processes contain pronouns, nouns and verbs that imply human interac-
tions, such as sharing and talking (i.e., “group” and “collaborate”). The perceptual process 
vocabulary includes words that suggest perceiving activities such as seeing, hearing, and 
feeling (i.e., “listen” and “touch”).

Semantic similarity

Previous studies found that the semantic similarities of each message with its previous 
and next message are important indicators for identifying the phases of cognitive pres-
ence. The semantic similarity measures how similar or dissimilar the meanings between 
words, sentences and paragraphs are (Manning & Schütze, 1999, pp. 294–295). We used 
the most common way to represent the semantic similarity between two messages: 
the cosine similarity of their term frequency-inverse document frequency (TF-IDF) 
weighted vectors (Ramos, 2003). The TF-IDF is a very useful way to convert words to 
numeric vectors, and calculates the number of times each word appears in a collection 
of documents, but inverts the frequency number. We also used the pre-trained bidirec-
tional encoder representations from transformers (BERT) model (Devlin et  al., 2019) 
as the numeric representations of each message and then computed the cosine simi-
larities between adjacent messages. BERT is a language model developed by Google for 
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pre-training language representations. These obtain bidirectional contextual informa-
tion by a combining left-to-right and right-to-left training process. It has reported state-
of-the-art results in various natural language processing tasks in recent years (Lee et al., 
2020; Liu et al., 2019).

Name‑entity words

State-of-the-art studies report that higher cognitive phases tend to have more name-
entity words (e.g., nouns of objects, such as persons, locations, organisations, products). 
Hence, we extracted 19 name-entity features from the discussion messages using the 
spaCy library (Honnibal & Montani, 2017), as was done in Neto et al.’s (2018) study.

Data processing and model training

To address research question 1 and 2, we trained and validated an automatic classifier 
for the phases of cognitive presence on the sample data from the Philosophy MOOC. 
We used the 225 classification features with a random forest (RF) algorithm. A RF model 
consists of a combination of many decision trees to solve regression or classification 
problems. Each individual tree operates a classification prediction independently and 
the class with the most distributions in all the trees’ outcomes forms the RF’s results 
(Breiman, 2001). The sample messages removed numbers and performed lemmatisation 
and case-folding in the data pre-processing.

Optimal parameters

To seek the best-performing RF model, we need to fine-tune two primary parameters, 
ntree (i.e., the number of decision trees constructed in each training) and mtry (i.e., the 
number of classification features used by each training tree). For the optimal ntree value, 
we examined 500 to 1500 sampled with every interval of 200. For the best mtry value, the 
tenfold cross-validation (CV) method was applied to examine 30 different numbers ran-
domly selected from 1 to 225. The k-fold CV method was applied for minimising over-
fitting risks (Casella et al., 2013, p. 181). The entire sample data were randomly split into 
ten non-repeated folds of the approximately same size (i.e., tenfold CV method). The 
fine-tuning process was then looped ten times with every nine-fold data as the training 
set and the remainder as the testing set. We create the final RF classifier with the combi-
nation of ntree and mtry value of the best-performing case.

The unbalanced class problem

We acknowledge that the skewed distribution of the cognitive presence phases (Table 2) 
can affect the classification performance. Thus, the SMOTE (Synthetic Minority Over-
sampling Technique) exact method suggested by Farrow et al. (2019) was applied in the 
training process to improve the class imbalance problems. The standard SMOTE method 
undersamples the majority classes and oversamples the minority classes by generating 
synthetic data points, which are the nearest neighbouring instances of the existing (orig-
inal) data points (Chawla et al., 2002). Farrow et al. (2019) extends the standard SMOTE 
algorithm, which is used to address the binary class problems, to tackle multi-class tasks. 
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Instead of undersampling the majority class, the SMOTE exact method enlarges the 
number of instances in the minority class into the exact same size of the majority class, 
which is more appropriate for coping with the limited data in this study. A tenfold CV 
was adopted to construct the optimal RF classifier with the best ntree and mtry value. 
The SMOTE exact method was performed in every CV loop to generate more synthetic 
instances merely in the training folds after the training-test data splits. We also report 
the performance of the RF classifier without the application of SMOTE exact method as 
a baseline.

Classifier performance metrics

The metrics used to evaluate the performance of the automatic classifiers were accu-
racy, Cohen’s κ, macro- and weighted-average F1 score in this study. The accuracy is the 
most widely used measure in supervised machine learning tasks. It is defined as the per-
centage of correctly classified instances over the total number of instances. Cohen’s κ 
coefficient (Cohen, 1960), which was initially proposed to measure the inter-rater reli-
ability between two human coders, can also evaluate the agreement between the predic-
tion labels and the pre-classified labels. The macro-averaged F1 score (Asch, 2013) was 
used to measure the overall performance across multiple classes, as it regards the classes 
with fewer instances as equally important as the larger classes. The weighted-averaged 
F1, which has been applied in the text classification tasks in recent years (Chakravarthi 
et al., 2020), was also adopted to alleviate the impact from the prediction results of the 
minority class (e.g., the Resolution phase). Moreover, the Mean Decrease Gini (MDG) 
index, also known as the Mean Decrease Impurity importance, was used to evaluate the 
importance of classification features for each category. It is a broadly applied measure 
that adds up the decrease in Gini impurity of each classification feature used for all the 
nodes in the prediction trees (Louppe et al., 2013).

Validation of the automatic classifier on the MOOC discussion data sets of other disciplines

To address research question 3, we applied the optimal automatic classifier trained on 
the Philosophy MOOC set (1,479 messages) to the sample data of other three MOOC 
data sets: The Education set (97 messages), the Medicine set (99 messages), and Human-
ities set (98 messages). Same evaluation metrics were used to evaluate the classifier’s 
performance in the three data sets.

Results
We demonstrate the results of training and testing our classifiers in the following three 
subsections associated with the three research questions introduced in the Purpose and 
the research questions section, respectively. The first subsection clarifies the prediction 
performance of the classifiers trained and tested on the philosophy MOOC data (RQ1). 
The second subsection reports the important features to predict the phases of cognitive 
presence in the training processes (RQ2). The third subsection displays the validation 
results that we tested the best-performing classifiers trained by the philosophy data set 
on the other three MOOC data sets (RQ3).
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Model evaluation when training and testing on the Philosophy MOOC data—RQ1

Table  3 demonstrates the performance results, including the accuracy, Cohen’s κ, and 
the standard deviations (SDs), of the RF classifiers by fine-tuning the two parameters 
(i.e., ntree and mtry) with and without the application of the SMOTE exact method. 
These results indicate that the ntree value of 1100 was optimal in both cases.

After the selection of the optimal parameters (i.e., ntree and mtry), we reran the 
training-test process by using the best mtry (54 and 94 features) and ntree value (1100 
trees), and ten repetitions of tenfold CV with and without the SMOTE exact method, 
respectively. Table 4 displays the performance metrics of the optimal classifiers. Cohen’s 
κ values indicate that the optimal classifiers reached a ‘moderate’ degree of inter-rater 
agreement (Landis & Koch, 1977). It also implies that the application of the SMOTE 
exact method can improve the overall inter-rater agreement of the classifier. However, 
the macro and weighted F1 scores suggest that the SMOTE exact method did not obvi-
ously improve the overall classification performance as the impact from the minority 
class, the Resolution phase, was still severe.

Table 4  The performance metrics of the optimal RF classifiers

The bold values denote the better-performing metrics of the classifier in each row

Classifiers Accuracy (SD) Cohen’s κ (SD) Macro F1 (SD) Weighed F1 (SD) ntree mtry

Classifier with the SMOTE 
exact method

0.730 (0.046) 0.542 (0.071) 0.509 (0.069) 0.742 (0.056) 1100 54

Classifier without the 
SMOTE exact method

0.736 (0.032) 0.516 (0.063) 0.472 (0.054) 0.771 (0.061) 1100 94

Table 5  Confusion matrix of the best classifier with the SMOTE exact method

The bold values denote the number of correct predictions in contrast to the incorrect predictions in the other cells

Predicted labels Manual labels

Other Triggering Exploration Integration Resolution

Other 1 2 1 0 0

Triggering 7 19 3 0 0

Exploration 1 7 74 8 1

Integration 0 0 6 13 1

Resolution 0 0 0 3 1
Error rate 0.889 0.321 0.119 0.458 0.667

Table 6  Confusion matrix of the best classifier without the SMOTE exact method

The bold values denote the number of correct predictions in contrast to the incorrect predictions in the other cells

Predicted labels Manual labels

Other Triggering Exploration Integration Resolution

Other 2 0 1 0 0

Triggering 4 21 3 0 0

Exploration 3 7 78 16 2

Integration 0 0 2 8 1

Resolution 0 0 0 0 0
Error rate 0.778 0.250 0.071 0.667 1.000
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Tables 5 and 6 illustrate the confusion matrices of the test data in the best cases with 
and without using the SMOTE exact method. The bold numbers in the diagonal denote 
the messages that were predicted correctly by the classifiers into five phases of cogni-
tive presence. The error rates indicate that our classifiers had the best performance on 
the Exploration phase, which accounted for the largest proportion of instances in the 
data set (see Table 2). The lowest performance was reflected in the Other and Resolution 
phase, as they had the fewest instances. Our classifiers with the SMOTE exact method 
obtained a better accuracy for Integration than those without. However, the prediction 
accuracy for the classes with the fewest instances was still low regardless of using the 
SMOTE method.

Feature importance analysis—RQ2

We also analysed the importance of the classification features for cognitive presence. 
Figure 1 demonstrates the importance measures (MDG scores) for all the 225 features 
used in our classifiers. The scores came from our optimal classifiers with the SMOTE 
exact method, which obtained higher inter-rater agreement across the skewed data. 
Most of the features had low MDG scores, whereas only a few features had high scores. 
We found that most of the classification features were weak indicators for cognitive 
presence.

Table 8 in the Appendix displays the top 10% of all the classification features ranked by 
their MDG scores. It also shows the importance scores of each feature to identify every 
cognitive presence phase separately. In other words, they measure how much including a 
feature increases the classification accuracy. The mean and SD values of the features for 
each cognitive phase were also listed for reference.

The linguistics features accounted for the majority of the top 10% features (i.e., 19 of 
23). Most of them came from the Coh-Metrix features, and merely two features from 
the LIWC. The most relevant two features were the number of words in a message (cm.
DESWC, first), and the average number of words in each sentence (cm.DESSL second). 
Their importance scores indicate that the longer messages had a stronger association 
with the higher phases (i.e., Integration and Resolution). The messages classified into the 
Triggering event phase had a high probability of using fewer words in the entire message 
and sentences. The messages classified into the Resolution phase tended to have longer 
sentences. Apart from the word and sentence lengths features, the strong indicators 

Fig. 1  Feature importance by Mean Decrease Gini (MDG) measure with the SMOTE exact method. The solid 
line displays the average MDG score (3.45), while the dashed line represents the median MDG score (2.97)
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for the message in the Other were the lower average scores of LSA similarity between 
verbs (cm.SMCAUSIsa, sixth), and the higher text readability scores for second-language 
readers (cm.RDL2, 19th). It also reflected a strong association with the Triggering event 
phase when the messages tended to include more first-person singular pronouns (i.e., 
‘I’), children words, non-repeated words, and abstract words (i.e., in contrast to con-
crete words), according to the results of cm.WRDPRP1s (7th), cm.WRDAOAc (8th), 
cm.LDTTRa (9th), cm.WRDCNCc (13th), respectively. The messages in the Exploration 
phase tended to use more concrete words (cm.WRDCNCc, No.13), meaningful content 
words (cm.WRDMEAc, 18th), specific words (cm.WRDHYPn, 15th) and nouns (cm.
WRDNOUN, 23rd). In the messages of higher cognitive phases (i.e., Integration and 
Resolution), the lexical diversity of words used (cm.LDMTLD, fourth) was higher than 
the lower phases. This positive relevance was stronger in the messages of the Integration 
phase. Moreover, the result of an LIWC feature (liwc.cogproc, 16th) implies that higher 
cognitive phases tended to use more words in the LIWC vocabularies that reflect cogni-
tive processes, and this phenomenon had the strongest association with the messages in 
the Exploration phase. The scores of another LIWC feature (liwc.ipron, 17th) strongly 
indicate that the messages in the Integration phase tended to use more impersonal pro-
nouns (i.e., ‘it’).

The measures of semantic similarities between the message and its previous and next 
message are important to identify the cognitive presence phases, according to the scores 
of sim.cos.pre (3rd), sim.bert.pre (14th), and sim.bert.next (21st) features in Table 8. The 
messages that had lower semantic similarity (TF-IDF) with their previous messages can 
be a strong indicator for the Triggering event phase. The message depth (mes.depth, 
10th), one of the discussion context features, is also an important indicator. Based on 
the mean and SD scores, the Resolution phase tended to appear more often at deeper 
positions of a conversation, whereas messages in the middle of a conversation had a high 
probability of being in the Exploration phase. Other contextual features, such as whether 
the message was the start or the end of a conversation, may have low relevance to the 
classification of cognitive presence in the target MOOC discussions.

Summary of important features for cognitive presence phases in the philosophy MOOC 

discussions

Messages in the

•	 The other: fewer words, less similar verbs, more readable for second-language readers.
•	 Triggering event: more ‘I’, children’s words, non-repeated words, abstract words, and 
verbs, less similar to the previous message.
•	 Exploration: more nouns, more concrete and specific words, more cognitive process-
ing relevant words, more often in the middle of a conversation.
•	 Integration: more lexically diverse words, more ‘it’.
•	 Resolution: more words, more often at a deeper position of a conversation.
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Cross‑domain validation of our classifier—RQ3

We also validated the optimal classifier, which was trained by the Philosophy MOOC 
set, on the sample data of the other three MOOC data. Table 7 displays the inter-rater 
agreements between the predicted phases by our RF classifier and the manual labels 
of cognitive presence phases by the two coders. Samples in Table 7 only contained the 
messages that were classified into the same phase by both coders. The overall agree-
ment between the automatic and manual labels was a percentage agreement of 49.0%, 
and Cohen’s κ of 0.224 (294 messages). Across the three subsets (disciplines), the sam-
ple from the Education MOOC had the highest percentage agreement of 57.7% and 
Cohen’s κ of 0.371 (97 messages). Samples from Medicine and Humanities achieved 
the percentage agreement lower than 50%, and Cohen’s κ lower than 0.2.

Discussion
In this section, we analyse the results reported in the previous section to answer each 
research question individually and discuss them with the relevant literature.

Model evaluation when training and testing on the philosophy MOOC data—RQ1

Our classifier reached an accuracy of 73.0% and Cohen’s κ of 0.542 at the best case, 
demonstrating the inter-rater agreement at a moderate level (Landis & Koch, 1977). 
It answers our first research question that the random forest classifier trained on the 
Philosophy MOOC data set with the revised classification features achieved better 
performance than the start-of-the-art classifiers trained by messages from small-scale 
courses taught in English (Farrow et  al., 2019, 2020), and performed slightly lower 
than the experiments on the small-scale courses taught in Portuguese (Neto et  al., 
2021). The higher performance in the Portuguese courses compared to the studies on 
the small-scale courses in English may be because we applied an adapted classifica-
tion rubric (Hu et al., 2020, 2021) of cognitive phases for the same MOOC, and only 
used the messages that were classified into the same phase by all the three coders, 
which could be a more robust training data set. The slightly lower performance in the 
English courses compared to the Portuguese courses might be due to the differences 
in languages, as most of the classification features used to train the classifiers are lin-
guistics features. The error rates (in Tables  5 and    6) for predicting the Other and 
Resolution phase were still high, which aligns with all the previous studies regard-
less of using the class rebalancing methods or languages (Barbosa et al., 2020; Farrow 

Table 7  The results of inter-rater agreement between the predicted phases by our classifier and 
manual classification phases by the two expert coders

The bold values denote that the better-performing metrics of our classifiers were achieved on the Education data set

Disciplines Messages % Agreement Cohen’s κ

Medicine 99 47.5 0.195

Education 97 57.7 0.371
Humanities 98 41.8 0.158

All 294 49.0 0.241
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et al., 2020; Kovanović et al., 2016; Neto et al., 2018, 2021). There were two possible 
reasons: (1) very few instances of messages were classified in these two phases, and 
(2) the classification features that we used have limitations to identify them from their 
adjacent phases (e.g., the Other from Triggering event, and Resolution from Integra-
tion). The confusion matrices (Tables 5 and  6) suggest that most of the errors by our 
classifiers appeared at the adjacent phases of cognitive presence, which is in line with 
the finding of the manual classification study by the expert coders (Hu et  al., 2020, 
2021). Therefore, we envisage that finer categorisation (e.g., including additional cat-
egories) of cognitive presence is needed to analyse MOOC discussions.

Feature importance analysis—RQ2

A constructive finding for answering the second research question is the impor-
tant classification features we used to identify each cognitive phase. We found that 
the longer messages with higher lexical diversity, which also occur later in a thread, 
indicate higher phases of cognitive presence. This point is consistent with the find-
ings in the discussions of the small-scale courses (Farrow et al., 2019, 2020; Kovanović 
et  al., 2016). Another finding is that the semantic similarities between the current 
message and its previous or next message were also important for identifying cogni-
tive presence in the settings of both MOOCs and the small-scale university courses. 
The semantic similarity represented by the BERT model (Devlin et al., 2019) suggests 
promising effects on identifying cognitive presence in MOOC discussions compared 
to the TF-IDF representations. In other words, using the BERT representations can 
potentially improve the performance of the cognitive classifiers in future studies. The 
distinct finding is that the classification features, including (1) whether a message is at 
the start or end of a thread, (2) name-entity words, and (3) the number of questions 
marks, were low relevance indicators to identify cognitive presence in the MOOC dis-
cussion messages. These features differ from what have been found in the small-scale 
courses (Barbosa et  al., 2020; Farrow et  al., 2020; Kovanović et  al., 2016; Neto et  al., 
2018, 2021). For instance, the first post in a thread of the Philosophy MOOC discus-
sions has a high probability of reflecting the higher phases of cognitive presence (e.g., 
Integration and Resolution), whereas the first position of a thread in the small-scale 
courses was a very strong indicator for a Triggering event (Farrow et  al., 2020). The 
difference in the importance of this feature implies that the MOOC learners might 
frequently use the posts to record personal reflective thoughts on the course con-
tents rather than asking for help from the instructors or peers. Another point is that 
the number of question marks indicates a very weak association with predicting any 
phases of cognitive presence in the MOOC discussions. In contrast, it was revealed 
as a very strong indicator to identify a Triggering event in all the previous studies on 
small-scale courses (Farrow et al., 2020; Kovanović et al., 2016; Neto et al., 2021). The 
difference suggests that the MOOC learners might often use the sentences ending with 
question marks to deliver their opinions in the discussion messages, such as the case of 
rhetorical questions, which is similar to the findings in Hu et al.’s (2021) manual clas-
sification work of cognitive presence in MOOC discussions. In addition, the teaching 
content in the Philosophy MOOC contained fewer name-entity words than the courses 
from other disciplines (e.g., Software engineering and Statistics courses), which often 
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discuss numbers or technical issues. The difference in the importance of the name-
entity words feature indicates that identifying cognitive presence is highly domain-rel-
evant and subjective. In Rourke and Anderson’s (2004) and Park (2009)’s studies, they 
also noted that manual categorisation of cognitive presence is a subjective operation 
relying on expert coders. Moreover, one of the linguistic features, cognitive processes 
from the LIWC, indicates a strong association with identifying higher cognitive phases 
in the MOOC discussions. This finding can be connected with Moore et  al.’s (2019, 
2020) studies that implied strongly positive associations between the word count of 
cognitive processes and the forum engagement in both the self- and instructor-paced 
MOOCs. These findings regarding the important classification features can provide 
the researchers with hints on the feature extraction and selection for further improve-
ment of the cognitive classifiers for MOOC discussions.

Cross‑domain validation of our classifier—RQ3

We also investigate the potential generalisability of our classifier when applied to the 
other three disciplines. The results suggest that the overall agreement between the man-
ual classification and model prediction of cognitive phases fell into the ‘fair-level’ (Landis 
& Koch, 1977). Our classifier performed slightly better on the Education course than 
on the other two MOOCs. Therefore, the answer to research question 3 was that our 
classifier trained by the Philosophy MOOC data could not be applied to the MOOCs 
from the other three disciplines (i.e., Medicine, Education, and Humanities) with suffi-
cient accuracy. The classification performance was better on the Education MOOC. This 
result is aligned with the finding in Neto et al.’s (2021) work on the small-scale course 
taught in Portugese, that the classifiers for cognitive presence developed for one disci-
pline was not sufficiently generic to use in the others. Three possible reasons for this 
could be: Firstly, the different vocabularies and collocations used in each discipline may 
confuse the machine learning algorithm since most of the classification features that 
we used were linguistic features; Secondly, the diversity of the pedagogical design and 
structures of each MOOC may impact the content that learners posted in the online 
forums (e.g., learners would post their answers to the questions in the MOOC videos or 
articles, or would propose their questions or thoughts spontaneously. The former would 
be strongly guided by the course design, whereas the latter may be more unexpected.); 
Finally, the instructors’ or mentors’ participation in the discussion forums could impact 
the identification of cognitive presence since it may change the contextual structures of 
the cognitive phases in each thread. The contextual features such as message depth and 
the semantic similarities between the adjacent messages were strong indicators for iden-
tifying cognitive presence, which have been found in this study and previous studies. 
Notably, the three presences of the CoI are ‘interdependent’, not isolated (Akyol & Gar-
rison, 2011), and the students’ critical discourse may be impoverished because of the 
instructors’ absence (Finegold & Cooke, 2006). Thus, the absence of the instructor’s par-
ticipation in the training data (i.e., the Philosophy MOOC) may lead to confusion for the 
automatic models when validating it on the sample data with the instructor’s participa-
tion (i.e., the Stanford MOOC sets). Future research is needed to enlarge the training 
data set by including diverse disciplines, different course designs, and self- and instruc-
tor-paced courses for seeking higher performance, generalisability and transferability of 
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automatic models to identify cognitive presence. These improvements can significantly 
contribute to the practical applications of the automatic models to support teaching and 
learning in future MOOCs.

Limitations

We acknowledge the limitations of the data sets used in this study. The limited size of 
the sample data and their unbalanced classes could influence the accuracy and reliability 
of the automatic classifiers. Although the training data size is similar to those reported 
in the literature, it is still far below the size required for practical use. Another limita-
tion is that the MOOC platform (i.e., FutureLearn) of the Philosophy course where we 
collected training data differs from the MOOC platform (i.e., Stanford University open 
online courses) where we validated the cross-domain application. The different platform 
designs may affect the distribution of cognitive phases, which also impact the perfor-
mance of automatic classifiers. The training data needs two or more coders to reliably 
classify the discussion messages into phases of cognitive presence, which is very time- 
and labour-consuming. Using a bigger data set from a broader set of MOOC contexts 
was beyond the scope of this doctoral research. Still, this research provides an initial step 
towards providing educators, learners, and researchers with robust models to automati-
cally analyse cognitive presence. This research also sheds light on potentially new under-
standing of the indicators of cognitive presence in MOOC discussion messages, albeit 
based on the limited data set. This provides a basis for larger future studies to verify such 
indicators and make such analyses more practically feasible in the future.

Conclusions
This study makes three main contributions. First, we adapted and applied the state-of-
the-art approach created for analysing discussion messages in traditional, small-scale, for-
credit courses to automatically identify the phases of cognitive presence on a Philosophy 
MOOC. The classifier performed a moderate-level agreement, which was slightly better 
than previous studies. Secondly, the importance of the classification features to identify 
cognitive presence in MOOC discussions was analysed in depth and compared to those 
found in traditional, small-scale, for-credit university courses. Finally, we found that cog-
nitive presence classifiers trained on one discipline MOOC data cannot yet be applied to 
other disciplines with sufficient accuracy. Future research can build on the implications of 
our findings to develop higher-performing and more generalised classifiers of cognitive 
presence. These could be practically implemented on MOOC platforms with a diverse 
range of discipline-based courses to support teaching and learning in real time.

We recommend that to improve the automatic classification performance and to 
support educators to better detect and diagnose the phases of cognitive presence in 
MOOCs, future research could (1) use larger data sets including the messages from dif-
ferent MOOC platforms and disciplines for model training and validation, (2) upgrade 
the automatic classifiers by weighting the classification features with high importance 
and excluding those with very low importance, (3) consider different MOOC contexts as 
classification features, such as the pedagogical designs, self- or instructor-paced learning, 
course objectives, and learners’ demographics and motivations, to build the classifier.
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Appendix
See Tables 8, 9 and 10.

Table 8  The importance scores of classification features (top 10%) sorted by MDG and for different 
phases of cognitive presence

Table 9  Definitions with message instances of the five categories in cognitive presence

ID Cognitive phases Brief definition Message examples

1 Triggering event Messages state users’ confusions “I do find it difficult to override over 
30 years of the normalisation of poorly 
constructed sentences”

2 Exploration Messages provide information about the 
cause of the confusion but without a 
coherent conclusion

“Both overthinking and underthinking leads 
you to live in low levels of consciousness. I 
think that  [one of the users] explains very 
well how to find the spot between the two 
approaches”

3 Integration Messages propose coherent conclusions 
to improve the confusing situation with 
sufficient substantiation

“I think this counter argument works collo-
quially but not technically it doesn’t follow 
from the premises that having a job will 
stop you wanting an iPhone unless you add 
an implied premise to that effect”

4 Resolution Messages apply, test, or argue the 
previous conclusions, usually as new 
constructs

“Another way to test it would be to see 
if similar positions eg heads of industry 
are also held by more left-handed people 
than statistics would suggest. It would be 
incredibly difficult to iron out other possible 
factors…”

0 Other Messages that do not fall into any of the 
above categories

“Thanks. I start that Mooc in May”
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Table 10  Summary of the 225 classification features used in our random forest classifiers

Both Coh-Metrix (3.0 version) and LIWC (2015 version) provided three duplicate features, which were (1) the number of 
the words in the message, (2) the average number of words in the message, and (3) the number of first-person singular 
pronouns in the message. Hence, we adopted 198 computational linguistic features, after removing the three duplicate 
features in LIWC, to build our automatic classifier

Category Feature name Feature description Quantity

Discussion contextual features mes.depth The numeric position (chronological order) within 
a thread

1

mes.replies The total number of replies beneath each message 
in a thread

1

mes.start A binary number to indicate whether the message 
is the start of a thread

1

mes.end A binary number to indicate whether the message 
is the end of a thread

1

Linguistic features cm* Cohesion measure features from the Coh-Metrix 
tool

108

liwc* Word-collection based features from the LIWC tool 90

Semantic similarity sim.cos.pre cosine similarity of the current and the previous 
message represented by two TF-IDF weighted 
vectors

1

sim.cos.next cosine similarity of the current and the next mes-
sage represented by two TF-IDF weighted vectors

1

sim.bert.pre similarity of the current and the previous message 
represented by pre-trained BERT embedding 
vectors

1

sim.bert.next similarity of the current and the next message rep-
resented by pre-trained BERT embedding vectors

1

Name entities ner* In each message, occurrence times of 18 types of 
name entities, including Person, ORG, Date, GPE, 
Location, Time, etc

18

ner.total The total number of all above name-entity types in 
a message

1
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