
RESEARCH ARTICLE Open Access

Computational thinking development
through creative programming in higher
education
Margarida Romero1* , Alexandre Lepage2 and Benjamin Lille2

* Correspondence:
Margarida.Romero@unice.fr
1Laboratoire d’Innovation et
Numérique pour l’Education,
Université Nice Sophia Antipolis,
Nice, France
Full list of author information is
available at the end of the article

Abstract

Creative and problem-solving competencies are part of the so-called twenty-first
century skills. The creative use of digital technologies to solve problems is also
related to computational thinking as a set of cognitive and metacognitive strategies
in which the learner is engaged in an active design and creation process and
mobilized computational concepts and methods. At different educational levels,
computational thinking can be developed and assessed through solving ill-defined
problems. This paper introduces computational thinking in the context of Higher
Education creative programming activities. In this study, we engage undergraduate
students in a creative programming activity using Scratch. Then, we analyze the
computational thinking scores of an automatic analysis tool and the human
assessment of the creative programming projects. Results suggested the need for a
human assessment of creative programming while pointing the limits of an
automated analytical tool, which does not reflect the creative diversity of the Scratch
projects and overrates algorithmic complexity.

Keywords: Computational thinking, Problem-solving, Creativity, Assessment

Creativity as a context-related process
Creativity is a key competency within different frameworks for twenty-first century

education (Dede, 2010; Voogt & Roblin, 2012) and is considered a competency-

enabling way to succeed in an increasingly complex world (Rogers, 1954; Wang,

Schneider, & Valacich, 2015). Creativity is a context-related process in which a solution

is individually or collaboratively developed and considered as original, valuable, and

useful by a reference group (McGuinness & O’Hare, 2012). Creativity is also considered

under the principle of parsimony, which occurs when one prefers the development of a

solution using the fewest resources possible. In computer science creative parsimony has

been described as a representation or design that requires fewer resources (Hoffman &

Moncet, 2008). The importance or the usefulness of the ideas or acts that are considered

as creative is highlighted by Franken (2007). These authors consider creativity as “the ten-

dency to generate or recognize ideas, alternatives, or possibilities that may be useful in

solving problems, communicating with others, and entertaining ourselves and others” (p.

348). In this sense, creativity is no longer considered a mysterious breakthrough, but a

process happening in a certain context which can be fostered both by the activity

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Romero et al. International Journal of Educational Technology in Higher Education
 (2017) 14:42
DOI 10.1186/s41239-017-0080-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s41239-017-0080-z&domain=pdf
http://orcid.org/0000-0003-3356-8121
mailto:Margarida.Romero@unice.fr
http://creativecommons.org/licenses/by/4.0/

orchestration and enhanced creative education activities (Birkinshaw & Mol, 2006).

Teachers should develop their capacities to integrate technologies in a reflective and in-

novative way (Hepp, Fernández, & García, 2015; Maor, 2017), in order to develop the cre-

ative use of technologies (Brennan, Balch, & Chung, 2014; McCormack & d’Inverno,

2014), including the creative use of programming.

From code writing to creative programming
Programming is not only about writing code but also about the capacity to analyze a situ-

ation, identify its key components, model the data and processes, and create or refine a

program through an agile design-thinking approach. Because of its complexity, program-

ming is often performed as a team-based task in professional settings. Moreover, profes-

sionals engaged in programming tasks are often specialized in specific aspects of the

process, such as the analysis, the data modelling or even the quality test. In educational

settings, programming could be used as a knowledge building and modeling tool for en-

gaging participants in creative problem-solving activities. When learners engage in a cre-

ative programming activity, they are able to develop a modelling activity in the sense of

Jonassen and Strobel (2006), who define modelling as “using technology-based environ-

ments to build representational models of the phenomena that are being studied” (p.3).

The interactive nature of the computer programs created by the learners allows them to

test their models, while supporting a prototype-oriented approach (Ke, 2014). Despite its

pedagogical potential, programming activities must be pedagogically integrated in the

classroom. Programming should be considered as a pedagogical strategy, and not only as

a technical tool or as a set of coding techniques to be learnt. While some uses of tech-

nologies engage the learner in a passive or interactive situation where there is little room

for knowledge creation, other uses engage the learner in a creative knowledge-building

process in which the technology aims at enhancing the co-creative learning process

(Romero, Laferrière & Power, 2016). As shown in the figure below, we distinguish five

levels of creative engagement in computer programming education based on the creative

learner engagement in the learning-to-program activity: (1) passive exposure to teacher-

centered explanations, videos or tutorials on programming; (2) procedural step-by-step

programming activities in which there is no creativity potential for the learner; creating

original content through individual programming (3) or team-based programming (4),

and finally, (5) participatory co-creation of knowledge through programming Fig. 1.

Creative programming engages the learner in the process of designing and developing

an original work through coding. In this approach, learners are encouraged to use the pro-

gramming tool as a knowledge co-constructing tool. For example, they can (co-)create the

history of their city at a given historical period or transpose a traditional story in a visual

programming tool like Scratch (http://scratch.mit.edu//). In such activities, learners must

use skills and knowledge in mathematics (measurement, geometry and Cartesian plane to

locate and move their characters, objects and scenery), Science and Technology (universe

of hardware, transformations, etc.), Language Arts (narrative patterns, etc.) and Social Sci-

ences (organization in time and space, companies and territories).

Computational thinking in the context of creative programming
We now expand on cognitive and metacognitive strategies potentially used by

learners when engaged in creating programming activities: procedural and creative

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 2 of 15

http://scratch.mit.edu/

programming. In puzzle-based coding activities, both the learning path and out-

comes have been predefined to ensure that each of the learners is able to

successfully develop the same activity. These step-by-step learning to code activities

do not solicit the level of thinking and cognitive and metacognitive strategies

required by ill-defined co-creative programming activities. The ill-defined situations

embed a certain level of complexity and uncertainty. In ill-defined co-creative

programming activities, the learner should understand the ill-defined situation,

empathize (Bjögvinsson, Ehn, & Hillgren, 2012), model, structure, develop, and

refine a creative program that responds in an original, useful, and valuable way to

the ill-defined task. These sets of cognitive and metacognitive strategies could be

considered under the umbrella of the computational thinking (CT) concept initially

proposed by Wing (2006) as a fundamental skill that draws on computer science.

She defines it as “an approach to solving problems, designing systems and under-

standing human behavior that draws on concepts fundamental to computing”

(Wing, 2008, p. 3717). Later, she refined the CT concept as “the thought processes

involved in formulating problems and their solutions so that the solutions are rep-

resented in a form that can be effectively carried out by an information-processing

agent” (Cuny, Snyder, & Wing, 2010). Open or semi-open tasks in which the

process and the outcome are not decided can address more dimensions of CT than

closed tasks like step-by-step tutorials (Zhong, Wang, Chen, & Li, 2016).

Ongoing discussion about computational thinking
The boundaries of computational thinking vary among authors. This poses an

important barrier when it comes to operationalizing CT in concrete activities

(Chen et al., 2017). Although some associate it strictly with the understanding of

algorithms, others insist to integrate problem solving, cooperative work, and

attitudes in the concept of CT. The identification of the core components of

computational thinking is also discussed by Chen et al. (2017). Selby and Woollard

(2013) addressed that problem and made a review of literature to propose a defin-

ition based on elements that are widely accepted: abstraction, decomposition,

Fig. 1 Five levels of creative engagement in educational programming activities

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 3 of 15

evaluations, generalization, and algorithmic thinking. On the one hand, these au-

thors’ definition deliberately rejected problem solving, logical thinking, systems de-

sign, automation, computer science content, and modelling. These elements were

rejected because they were not widely accepted by the community. On the other

hand, other authors such de Araujo, Andrade, and Guerrero (2016, p.8) stress,

through their literature review on the CT concept and components, that 96% of

selected papers considered problem solving as a CT component. Therefore, we

claim that the previously named components are relevant to the core of computa-

tional thinking and should be recognized as part of it.

Roots of the computational thinking concept
Following Wing (2006, 2008), Duschl, Schweingruber, Shouse, and others (2007) have

described CT as a general analytic approach to problem solving, designing systems, and

understanding human behaviors. Based on a socio-constructivist (Nizet & Laferrière,

2005), constructionist (Kafai & Resnick, 1996) and design thinking approach (Bjögvins-

son et al., 2012), we consider learning as a collaborative design and knowledge creation

process that occurs in a non-linear way. In that, we partially agree with Wing (2008),

who considers the process of abstraction as the core of computational thinking. Ab-

straction is part of computational thinking, but Papert (1980, 1992) pointed out that

programming solicits both concrete and abstract thinking skills and the line between

these skills is not easy to trace. Papert (1980) suggests that an exposure to computer

science concepts may give concrete meaning to what may be considered at first glance

as abstract. He gives the example of using loops in programming, which may lose its

abstract meaning after repeated use. If we expand that example by applying it to a

widely-accepted definition of abstraction from the APA dictionary (i.e. “such a concept,

especially a wholly intangible one, such as “goodness” or “beauty””, VandenBoss, 2006),

we could envision a loop as something tangible in that it may be seen as such in the

environment. The core of CT might be the capacity to transpose abstract meaning into

concrete meaning. This makes CT a way to reify an abstract concept into something

concrete like a computer program or algorithm. In this sense programming is a process

by which, after a phase of analysis and entities identification and structuration, there is

a reification of the abstract model derived from the analysis into a set of concrete in-

structions. CT is a set of cognitive and metacognitive strategies paired with processes

and methods of computer science (analysis, abstraction, modelling). It may be related

to computer science the same way as algorithmic thinking is related to mathematics.

“Algorithmic thinking is a method of thinking and guiding thought processes

that uses step-by-step procedures, requires inputs and produces outputs, requires

decisions about the quality and appropriateness of information coming and

information going out, and monitors the thought processes as a means of

controlling and directing the thinking process. In essence, algorithmic thinking is

simultaneously a method of thinking and a means for thinking about one's

thinking.” (Mingus & Grassl, 1998, p. 34).

Algorithmic thinking has to deal with the same problem as computational think-

ing: its limits are under discussion. To some authors it is limited to mathematics.

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 4 of 15

But definitions such as that from Mingus and Grassl (1998) make the concept go

beyond mathematics (Modeste, 2012). Viewing algorithmic thinking as the form of

thinking associated to computer science at large instead of part of mathematics

allows a more adequate understanding of its nature (Modeste, 2012). We can

consider that algorithmic thinking is an important aspect of computational think-

ing. However, when considering computational thinking as a creative prototype-

based approach we should not only consider the design thinking components

(exploration, empathy, definition, ideation, prototyping, and creation) (Brown,

2009) but also the hardware dimension of computational thinking solutions (i.e.

use of robotic components to execute a program). Within a design thinking

perspective, different solutions are created and tested in the attempts to advance

towards a solution. From this perspective we conceptualize CT as a set of cognitive

and metacognitive strategies related to problem finding, problem framing, code lit-

eracy, and creative programming (Brennan & Resnick, 2013). It is a way to develop

new thinking strategies to analyze, identify, and organize relatively complex and ill-

defined tasks (Rourke & Sweller, 2009) and as creative problem solving activity

(Brennan et al., 2014). We now elaborate on how computational thinking can be

assessed in an ill-defined creative programming activity.

Assessment of computational thinking
There is a diversity of approaches for assessing CT. We analyze three approaches in

this section: Computer Science Teachers Association’s (CSTA) curriculum in the USA

(Reed & Nelson, 2016; Seehorn et al., 2011), Barefoot’s computational thinking model

in the UK (Curzon, Dorling, Ng, Selby, & Woollard, 2014), and the analytical tool Dr.

Scratch (Moreno-León & Robles, 2015).

CSTA’s curriculum includes expectation in terms of levels to reach at every school

grade. It comprises five strands: (1) Collaboration, (2) Computational Thinking, (3)

Computing Practice and Programming, (4) Computers and Communication Devices,

and (5) Community, Global, and Ethical Impacts. Thus, CSTA’s model considers com-

putational thinking as part of a wider computer science field. The progression between

levels appears to be based on the transition between low-level programming and

object-oriented programming (i.e. computer programs as step-by-step sequences at

level 1, and parallelism at level 3). CSTA standards for K12 suggest that programming

activities in K12 should “be designed with a focus on active learning, creativity, and

exploration and will often be embedded within other curricular areas such as social sci-

ence, language arts, mathematics, and science”. However, CSTA standards do not give

creativity a particular status in their models; moreover, the evaluation of creativity in

programming activities seems to be ultimately up to the evaluator. From our perspec-

tive, and because of the creative nature of CT, we need to consider creativity in an

explicit way and provide educators with guidelines for assessing it.

The Barefoot CT framework is defined through five components: logic, algorithms,

decomposition, patterns, abstraction, and evaluation. We agree on their relevance in

computational thinking. Barefoot CT framework provides concrete examples of how

each of the components may be observed in children of different ages. However, relying

only on that model may result in assessing abilities instead of competency. These con-

cepts represent a set of abilities more than an entire competency (Hoffmann, 1999).

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 5 of 15

Dr. Scratch is a code-analyzer that outputs a score for elements such as abstraction,

logic, and flow control (Moreno-León & Robles, 2015). Scores are computed automat-

ically from any Scratch program. It also provides instant feedback and acts as a tutor-

ial about how one can improve his program, which makes it especially adequate for

self-assessment. Hoover et al. (2016) believe that automated assessment of CT can po-

tentially encourage CT development. However, Dr. Scratch only considers the com-

plexity of programs, not their meaning. This tool is suitable to evaluate the level of

technical mastery of Scratch that a user has, but it cannot be used to evaluate every

component of a CT competency as we defined it (i.e. the program does not give

evidence of thought processes, and does not consider the task demanded). Finally, it

would be hard for an automated process to measure or teach creativity since that

behaviour is an act of intelligence (Chomsky, 2008) which should be analyzed consid-

ering the originality, value, and usefulness for a given problem-situation. In other

terms, there is a need to evaluate the appropriateness of the creative solution accord-

ing to the context and avoid over-complex solutions, which use unnecessary or

inappropriate code for a given situation. In automatic code-analyzers tools, it is

impossible to rate creativity, parsimony and appropriateness of a program considering

that ill-defined problem-situations could lead to different solutions. We therefore

now elaborate on how computational thinking can be assessed while considering that

CT is intertwined with other twenty-first century competencies such as creativity and

problem-solving.

Computational thinking components within the #5c21
We consider CT as a coherent set of cognitive and metacognitive strategies en-

gaged in (complex) systems identification, representation, programming, and evalu-

ation. After identifying and analyzing a problem or a user need, programming is a

creative problem-solving activity. The programming activity aims to design, write,

test, debug, and maintain a set of information and instructions expressed through

code, using a particular programming language, to produce a concrete computer

program which aims to meet the problem or users’ needs. Programming is not a

linear predefined activity, but rather a prototype-oriented approach in which inter-

mediate solutions are considered before releasing a solution which is considered

good enough to solve the situation problem. Within this approach of programming,

which is not only focused on the techniques to code a program, we should con-

sider different components which are related to the creative problem-solving

process. In this sense, we identify six components of the CT competency in the

#5c21 model: two related to code and technologies literacies and four related to

the four phases of Collaborative Problem Solving (CPS) of PISA 2015. Firstly, com-

ponent 1 (COMP1) is related to the ability to identify the components of a situ-

ation and their structure (analysis/representation), which certain authors refer to as

problem identification. Component 2 (COMP2) is the ability to organize and model

the situation efficiently (organize/model). Component 3 (COMP3) is the code literacy.

Component 4 (COMP4) is the (technological) systems literacy (software/hardware). Com-

ponent 5 (COMP5) focuses on the capacity to create a computer program (programming).

Finally, component 6 (COMP6) is the ability to engage in the evaluation and iterative

process of improving a computer program Fig. 2.

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 6 of 15

When we relate computational thinking components to the four phases of Collabora-

tive Problem Solving (CPS) of PISA 2015, we can link the analysis/abstraction compo-

nent (COMP1) to collaborative problem solving (CPS-A) Exploring and Understanding

phase. model component (COMP2) is related to (CPS-B) representing/model compo-

nent (COMP2) is related to (CPS-B) representing and formulating. The capacity to plan

and create a computer program (COMP5) is linked to (CPS-C) planning and executing

but also to (CPS-D) monitoring and reflecting (COMP6) Fig 3.

Code literacy (COMP3) and (technological) systems literacy (COMP4) are pro-

gramming and system concepts and processes that will help to better

operationalize the other components. They are also important in CT because

knowing about computer programming concepts and processes can help develop

CT strategies (Brennan & Resnick, 2013) and at the same time, CT strategies can

be enriched by code-independent cognitive and metacognitive strategies of thinking

represented by CPS related components (COMP1, 2, 5 and 6). Like in the egg-hen

paradox, knowing about the concepts and process (COMP3 and 4) could enrich

the problem-solving process (COMP1, 2, 5 and 6) and vice versa. The ability to be

creative when analyzing, organizing/modeling, programming, and evaluating a com-

puter program is a meta-capacity that shows that the participant had to think of

different alternatives and imagine a novel, original and valuable process, concept,

or solution to the situation.

Fig. 2 Six components of the CT competency within the #5c21 framework

Fig. 3 Four components of the CT competency related to CPS of PISA 2015

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 7 of 15

Advancing creative programming assessment through the #5c21 model
After revising three models of CT assessment (CSTA, Barefoot, Dr. Scratch), we

describe in this section our proposal to evaluate CT in the context of creative pro-

gramming activities. We named our creative programming assessment the #5c21

model, because of the importance of the five key competencies in twenty-first cen-

tury education: CT, creativity, collaboration, problem solving, and critical thinking.

First, we discuss the opportunity of learning the object-oriented programming

(OOP) paradigm from the early steps of CT learning activities. Second, we examine

the opportunity to develop CT in an interdisciplinary way without creating a new

CT curriculum in one specific discipline such as mathematics. Third, we discuss

the opportunity of developing CT at different levels of education from primary

education to lifelong learning activities.

In certain computer sciences curricula, low-level programming is introduced before

OOP, which is considered as a higher-level of programming. Nevertheless, following

Kölling (1999) if the OOP paradigm is to be learnt, it should not be avoided in the early

stages of the learning activities to avoid difficulties due to paradigmatic changes. For

that reason, our model does not restrict programming to step-by-step at early stages of

development and embraces the OOP paradigm from its early stages. Moreover, we

should consider the potential of non-programmers to understand OOP concepts with-

out knowing how to operationalize it through a programming language. For instance,

we may partially understand the concept of heritage through the concept of family

without knowing the heritage concepts in computer science. Our model of a CT com-

petency recognizes the possibility for certain components to develop at different

rhythms, or for an individual with no prior programming experience to master some

components (i.e. abstraction). For that reason, we did not integrate age-associated

expectations. These should be built upon the context and should be task-specific.

While CSTA considers concept mapping as a level 1 skill (K-3), our model would con-

sider that this skill may be evaluated with different degrees of complexity according to

the context and prior pupil’s experience. Our view is that computational thinking en-

compasses many particular skills related to abstraction.

Our model pays attention to the integration of CT into existing curricula. We

recognize the identification of CT related skills in the CSTA’s model, and we agree to

its relevance in computer science courses. However, our CT model is intended for use

in any subject. Thus, it carefully tries not to give over relative importance to subjects

such as mathematics and science. In that, we are working to define computational

thinking as a transferable skill that does not only belong to the field of computer

science. We also made it to be reusable in different tasks and to measure abilities as well

as interactions between them (i.e. “algorithm creation based on the data modelling”).

Our model of computational thinking is intended for both elementary and high

school pupils. In that it differs from CSTA, which expects nothing in term of computa-

tional thinking for children under grade 4. Though CSTA expects K-3 pupils to “use

technology resources […] to solve age-appropriate problems”, some statements suggest

that they should be passive in problem-solving (i.e.: “Describe how a simulation can be

used to solve a problem” instead of creating a simulation, “gather information” instead

of produce information, and “recognize that software is created to control computer

operations” instead of actually controlling something like a robot).

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 8 of 15

Methodology for assessing CT in creative programming activities
In order to assess the CT from the theoretical framework and its operationalization as

components described in the prior section, we have developed an assessment protocol

and a tool (#5c21) to evaluate CT in creative programming activities. Before the

assessment, the teacher defines the specific observables to be evaluated through the use

of the tool. Once the observables are identified, four levels of achievement for each ob-

servable are described in the tool. The #5c21 tool allows a pre-test, post-test or just-in

time teacher-based assessment or learner self-assessment which aims at collecting the

level of achievement in each observable for the activity. At the end of a certain period

of time (e.g., session and academic year) the teacher can generate reports showing the

evolution in learners’ CT assessment.

A distinctive characteristic of the #5c21 approach to assess CT is the consideration

of ill-defined problem-situations. The creative potential of these activities engages the

participants in the analysis, modelling and creation of artifacts, which may provide the

teacher with evidence of an original, valuable, relevant, and parsimonious solution to a

given problem-situation.

Participants

A total of 120 undergraduate students at Université Laval in Canada (N = 120) were en-

gaged in a story2code creative challenge. All of them were undergraduate students of a

bachelor’s degree in elementary school education. They were in the third year of a four-

year program and had no former educational technology courses. At the second week

of the semester, they were asked to perform a programming task using Scratch. Scratch

is a block-based programming language intended for children from 7 years of age. Par-

ticipants were only presented two features of the language: creation of a new sprite (ob-

ject) and the possibility to drag and drop blocks in each sprite’s program. They were

also advised about the use of the green flag to start the program.

Procedure

The ill-defined problem proposed to the students is rooted in the narrative frame of a

children’ book introducing basic concepts of programming and robotics, Vibot the robot

(Romero & Loufane, 2016). The story introduces a robot, which has to be programmed for

play. The Scratch Cat is the mascot of the visual programming tool Scratch and the default

sprite appearing in each new project. Vibot is a fictional robot character, which waits for in-

structions to act in its environment. Based on these two characters, the story2code are short

text-based stories, which engage learners in analyzing, modeling, and creating a Scratch pro-

ject representing the story. In our study, participants were given a story2code and were asked

to represent it in Scratch. The situation invited participants to create a Scratch project featur-

ing a dialog between two characters: Scratch and Vibot. The students were given a text-based

script for creating the dialog including 9 quotations in which Scratch and Vibot the robot

introduce themselves. After the dialog between the two characters, Scratch asks Vibot to draw

a blue line. The scenario of this story2code could be solved with a certain degree of diversity

in the Scratch visual programming software. Participants were asked to remix a Scratch pro-

ject containing the two characters’ sprites. Remixing is a feature of Scratch that allows users to

duplicate existing projects and edit them. Participants were required to share their projects in

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 9 of 15

order to develop a double assessment: the code-analyzer Dr. Scratch and the #5c21 assess-

ment by an external evaluator.

Assessment of computational thinking
Computational thinking was assessed from a Scratch project developed by each under-

graduate student using two different tools: Dr. Scratch and the #5c21 CT competency

model. Firstly, all the Scratch projects were passed through the Dr. Scratch analytical

tool. Then, they were evaluated by an evaluator following the #5c21 CT competency

model. Dr. Scratch is an automated tool and has been selected in order to highlight the

need of a competency-based approach in the assessment of CT.

Results
All participants had to submit a Scratch program by providing its URL. They were re-

quired to share it in order to make it accessible to an evaluator. In this section we high-

light the results obtained from the Dr. Scratch analytical tool and those obtained using

the #5c21 CT competency model.

CT assessment using Dr. scratch

Dr. Scratch results are computed from seven criteria: abstraction, parallelism, logic,

synchronization, flow control, user interactivity, and data representation. Each of them may

be given a maximum of three points, for a possible total score of 21. Thirteen projects have

not been passed through Dr. Scratch due to technical problems (i.e. URL not provided), so

we have Dr. Scratch’s results for 107 projects (n = 107, M = 0.27%; ET = 0.06%) Fig. 4.

Ninety-one participants out of 107 got a total score of 6 at Dr. Scratch. The highest

score was 10 and was reached by two participants. Instead of organizing the dialogs

using timers (wait instruction), those two participants used broadcasting. Broadcasting

is a feature of Scratch that allows the user to trigger events and program the events’

handler (or listener) or each of the sprites (objects). Event handlers or listeners are

callback subroutines which are able to react to certain inputs. Using the broadcasting

feature caused Dr. Scratch to attribute additional points of parallelism and

synchronization. One of these two highest-score projects received points for the use of

a single event’s handler or listener “when backdrop switches to …” in both parallelism

and synchronization. Typical projects (those who scored 6) all worked about the same

way: there was only one event’s handler for each sprite (when green flag is clicked), and

dialogs were synchronized using timers (wait instruction).

Assessment using #5c21 CT model

Results from the #5c21 computational thinking model are determined through some

observables derived from the model, its components, and their subcomponents. These

Fig. 4 Automatic CT analysis by Dr. Scratch (0.251 ± 0.0184)

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 10 of 15

subcomponents were selected because of their relevance to the situation and the possi-

bility to observe them in programs handed. Each of these subcomponents is converted

into an observable that is task-specific. For instance, “Identification of entities” is a

subcomponent of “Analysis/abstraction” (COMP1). It has been converted to an observ-

able item specific to the task demanded: “Dialogs are well-integrated and the blue line

is traced”. When applicable, these observables were rated twice: one time for the level

of execution and a second time for the level of creativity. These four subcomponents

were converted into observables: “Identification of entities” (plus creativity assessment),

“Identification of events” (no creativity assessment), “Identifying the function (or code

block) for a certain objective” (with creativity assessment), and “Analysis of errors

leading to improvement of the computer program” (no creativity assessment). All of

them were rated on a 4-point scale. When applicable, creativity was also assessed on a

4-point scale. That makes a possible total score of 24 points (4 points for each of the 4

observables, plus 8 points of creativity). Thirty-three participants have no score using

the #5c21 CT competency model due to technical problems (i.e. the Scratch project

was not shared), so we have results for 87 participants. The two highest-score projects

using the #5c21 CT competency model are not the same as the two from Dr. Scratch’s

results. Their Dr. Scratch’s scores are 8 and 6, and their CT competency score are

respectively 22 and 23 (n = 87, M = 0.64%, ET = 0.3%) Fig. 5.

Only 11 projects where given a score higher than 1 (in a 4-point scale) in creativity

for “Identification of entities”. The two aforementioned projects scored 3 points

out of 4 and 2 points out of 4 in creativity for that subcomponent. In the first

project, creativity was assessed from the untaught use of sounds (instruction “play

sound”) and the relevance of sounds chosen (i.e. the cat says “meow” and the

robot makes “laser sounds”). Using irrelevant sounds would not have been consid-

ered an evidence of creativity because of the principle of parsimony, which aims to

value the use of the fewer resources possible when solving a given situation

through a creative solution. Creativity in the second project was assessed through

the use of a loop to make the cat walk (using a change in costumes and delays).

That was considered a higher level of modelling by the expert evaluators, since the

walking is more realistic than a translation. Because participants had no prior ex-

perience with Scratch, using untaught blocks, such as broadcasting, was considered

by the evaluator as an evidence of creativity.

Dr. scratch and #5C21 CT assessment differences

The analysis of CT based on the automatic Dr. Scratch analysis and the human expert

#5c21 CT model lead to important differences. While the automatic analysis of the

Scratch projects leads to similar scores in terms of algorithmic complexity (with a low

standard deviation, ET = 0.0184), the expert analysis shows a high diversity in the cre-

ative programming performance (ET = 0.0551) Fig. 6.

Fig. 5 #5c21 CT expert analysis (0.469 ± 0.0551)

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 11 of 15

Discussion on creative diversity assessment
Even considering the simplicity of the task demanded when solving the story2code, each

Scratch project submitted by the students was different. Each of the 120 projects created by

the undergraduate students was original. Despite the simplicity of the task demanded (to

create a Scratch project featuring a dialog between two characters), none of the projects

was identical to another. For instance, the project differences might come from the choice

of blocks, the order in which they are placed, the duration of timers, the type of events’ han-

dlers and their operationalization, or the use of optional features such as backdrops

switches. However, results from an automated analytical tool like Dr. Scratch do not reflect

that wide creative diversity. The model we proposed is based on both computer science and

problem-solving as defined by PISA 2015. It is an attempt to define criteria that may be suit-

able to evaluate ill-defined tasks involving CT. Results from Dr. Scratch and from the #5c21

CT competency model are not to be compared on any basis as they do not evaluate the

same components. Dr. Scratch evaluates the algorithmic complexity of a Scratch project

based on a unique model of CT assessment which is generic and does not consider the pro-

gram in relation to the situation problem. In that, it is not intended for use when the aim is

to evaluate CT as a creative problem-solving competency. However, the use of Dr. Scratch

is a useful tool for allowing the learners to reflect on the algorithmic implementation and

could provide useful tips for improving the quality of the program. Dr. Scratch is able to

identify missing names of instances, repetitions, and some coding practices that could be

improved. Also, the automatic analysis allows a generalized use without requiring a human

activity of evaluation. The #5C21 CT model is based on humans with a certain knowledge

of CT to carry on an assessment which is focused not only on the algorithmic properties of

the program, but considers also the creative process by which the learner has developed a

valuable, original and parsimonious solution to a specific situation.

Contribution of the #5c21 model for creative programming

The #5c21 CT model is not language-specific and could serve to evaluate different types of

creative programming activities that can be developed in different computer languages but

also within unplugged activities. Compared to other CT conceptualizations, we explicitly in-

tegrate a hardware component (COMP 4), which could be part of the creative solution in a

creative programming task. The results on the evaluation of the story2code task suggest the

pertinence of combining automatic code analysis tools and human expertise assessment on

the creative aspects of programming. By developing this study, we intended to advance the

CT competency conceptualization and assessment; from a creative programming perspec-

tive, we should critically consider the possibility to assess human creativity using automated

tools such Dr. Scratch.

Fig. 6 Difference of means (d = −0.218, SE = 0.0294, p < 0.001)

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 12 of 15

Creative programming activities through the lens of the zone of proximal development

The wide diversity of projects collected brings us to think about the possible application

of the Vygotskian concept of Zone of Proximal Development (Vygotsky, 1978). To place

an individual in a situation of competency, the situation proposed to the learner must

offer an appropriate degree of newness, a certain ambiguity or ill-definition and the cre-

ativity potential to engage the learner in a creative process where there is not only a single

process or solution to accomplish, but a creative scope of processes and solutions. In this

sense, creative programming activities should engage learners in problem situations where

the process and the solution are not known in advance and could be very diverse in order

to allow the learners to develop their own creative process and solution. We should, at

the same time, recognize the need to design programming activities with an adequate po-

tential for their creative activity. In that way, the ill-defined problem-situation could be

analyzed while allowing learners to create and implement a solution When activities are

too externally guided or structured, there is no room for creativity, while too much ambi-

guity in the ill-defined situation could lead to uncertainty and confusion. Meanwhile,

there is the Zone of Proximal Creativity (ZPC). The ZPC describes an appropriate level of

creative potential to be developed by the learner when engaged in an activity that allows

an appropriate potential of creativity during the development of a creative solution, which

is original, valuable, useful, and parsimonious for a given situation and context. From the

observations of this study, we highlight the value not only of developing the CT compe-

tency by considering creative-enough programming activities within the ZPC, but also of

encouraging ambiguity tolerance among learners in order to embrace ill-defined situa-

tions as an opportunity to express their creativity.

Limits of the study and future research directions

While the results and insights of this study contributes in offering a better understanding

on creative and context-related implementation of programming in education, we also

want to point out that this study was focused on a story2code task based on a dialogue

between two characters followed by an instruction to draw a line. This story2code task

offers different degrees of creative potential to be solved while being simple to achieve.

The simplicity of this task could have had an influence on the creative expression of the

students and we should develop further studies in which more complex tasks are analysed

in relation to the creative expression in order to identify the influence of the degree of

complexity of the task on creative programming. The present study is also limited to a

very specific task involving undergraduate students with no prior experience in program-

ming. Future research should therefore analyze CT skills in more complex and open activ-

ities in order to deepen our understanding on how CT skills are deployed in an ill-defined

creative programming task. We advocate the need for research with a wider range of

learners in order to better understand how CT components may show or develop across a

lifespan and through different creative programming activities including not only Scratch

but also other technological supports from mobile based programming to educational ro-

botics devices aiming to engage the learner in creative programming.

Acknowledgements
We acknowledge the contribution of John Teye for his advice during the linguistic revision.

Funding
This project has been funded by the Fonds de recherche du Québec – Société et culture (FRQSC).

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 13 of 15

Authors’ contributions
All persons who meet authorship criteria are listed as authors (RLL), and all authors (RLL), certify that we have
participated sufficiently in the work to take public responsibility for the content, including participation in the concept,
design, analysis, writing, or revision of the manuscript. All authors read and approved the final manuscript.

Competing interests
All authors (Romero, Lepage, Lille) declare that we have no competing financial, professional or personal interests that
might have influenced the performance or presentation of the work described in this manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Laboratoire d’Innovation et Numérique pour l’Education, Université Nice Sophia Antipolis, Nice, France. 2Université
Laval, Québec, Canada.

Received: 14 June 2017 Accepted: 20 November 2017

References
Birkinshaw, J. M., & Mol, M. J. (2006). How management innovation happens. MIT Sloan Management Review, 47(4), 81–88.
Bjögvinsson, E., Ehn, P., & Hillgren, P.-A. (2012). Design things and design thinking: Contemporary participatory design

challenges. Design Issues, 28(3), 101–116.
Brennan, K., Balch, C., & Chung, M. (2014). Creative computing. Harvard University Press: Cambridge. Retrived from http://

scratched.gse.harvard.edu/guide/
Brennan, K., & Resnick, M. (2013). Imagining, creating, playing, sharing, reflecting: How online community supports

young people as designers of interactive media. In Emerging technologies for the classroom (p. 253–268). New York:
Springer.

Brown, T. (2009). Change by design. How design thinking transforms organizations and inspires innovation. New York, NY,
USA: Harper Collins.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’
computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162–175.

Chomsky, N. (2008). Language and mind, (3rd ed.,). Cambridge: Cambrdige University Press.
Cuny, J., Snyder, L., & Wing, J. M. (2010). Demystifying computational thinking for non-computer scientists. Unpublished

Manuscript in Progress, Referenced in https://www.cs.cmu.edu/link/research-notebook-computational-thinking-
what-and-why.

Curzon, P., Dorling, M., Ng, T., Selby, C., & Woollard, J. (2014). Developing computational thinking in the classroom: A
framework.

de Araujo, A. L. S. O., Andrade, W. L., & Guerrero, D. D. S. (2016). A systematic mapping study on assessing
computational thinking abilities. In Frontiers in education conference (FIE), 2016 IEEE, (pp. 1–9). IEEE.

Dede, C. (2010). Comparing frameworks for 21st century skills. In J. A. Bellanca, & R. S. Brandt (Eds.), 21st century skills:
Rethinking how students learn, (vol. 20, pp. 51–76). Bloomington, IN: Solution Tree Press.

Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: Learning and teaching science in
grades K-8. National Academies report. Washington, DC: National Academies Press.

Franken, R. E. (2007). Human motivation (6th ed). Belmont, CA: Thomson/Wadsworth.
Hepp, P., Fernández, M. À. P., & García, J. H. (2015). Teacher training: Technology helping to develop an innovative and

reflective professional profile. International Journal of Educational Technology in Higher Education, 12(2), 30–43.
Hoffman, R. N., & Moncet, J.-L. (2008). All Data are Useful, but not All Data are Used! What’S Going on Here? In

Geoscience and Remote Sensing Symposium, IGARSS 2008 (p. II-1-II-4). Boston, MA: IEEE. https://doi.org/10.1109/
IGARSS.2008.4778912.

Hoffmann, T. (1999). The meanings of competency. Journal of European Industrial Training, 23(6), 275–286.
Hoover, A. K., Barnes, J., Fatehi, B., Moreno-León, J., Puttick, G., Tucker-Raymond, E., & Harteveld, C. (2016). Assessing

computational thinking in students’ game designs. In Proceedings of the 2016 annual symposium on computer-
human interaction in play companion extended abstracts, (pp. 173–179). ACM.

Jonassen, D., & Strobel, J. (2006). Modeling for meaningful learning. In Engaged learning with emerging technologies (p. 1–27).
Dordrecht: Springer.

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning in a digital world. (Vol. 1).
New York, NY: Routledge.

Ke, F. (2014). An implementation of design-based learning through creating educational computer games: A case study
on mathematics learning during design and computing. Computers & Education, 73, 26–39.

Kölling, M. (1999). The problem of teaching object-oriented programming. Journal of Object Oriented Programming, 11(8), 8–15.
Maor, D. (2017). Using TPACK to develop digital pedagogues: a higher education experience. Journal of Computers in

Education, 4(1), 71–86.
McCormack, J., & d’Inverno, M. (2014). On the future of computers and creativity. In AISB 2014 Symposium on

Computational Creativity, London.
McGuinness, C., & O’Hare, L. (2012). Introduction to the special issue: New perspectives on developing and assessing

thinking: Selected papers from the 15th international conference on thinking (ICOT2011). Thinking Skills and
Creativity, 7(2), 75–77 https://doi.org/10.1016/j.tsc.2012.04.004.

Mingus, T. T. Y., & Grassl, R. M. (1998). Algorithmic and recursive thinking - current beliefs and their implications for the
future. In L. Morrow, & M. J. Kenney (Eds.), The teaching and learning of algorithm in school mathematics, (pp. 32–43).

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 14 of 15

http://scratched.gse.harvard.edu/guide/
http://scratched.gse.harvard.edu/guide/
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://doi.org/10.1109/IGARSS.2008.4778912
https://doi.org/10.1109/IGARSS.2008.4778912
http://dx.doi.org/10.1016/j.tsc.2012.04.004

Modeste, S. (2012). La pensée algorithmique : Apports d’un point de vue extérieur aux mathématiques. Presented at
the Colloque espace mathématique francophone.

Moreno-León, J., & Robles, G. (2015). Dr. scratch: A web tool to automatically evaluate scratch projects. In Proceedings of
the workshop in primary and secondary computing education, (pp. 132–133). ACM.

Nizet, I., & Laferrière, T. (2005). Description des modes spontanés de co-construction de connaissances: contributions à
un forum électronique axé sur la pratique réflexive. Recherche et Formation, 48, 151–166.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Inc: Basic Books.
Papert, S. (1992). The Children’s machine. New York: BasicBooks.
Reed, D., & Nelson, M. R. (2016). Current initiatives and future directions of the computer science teachers association

(CSTA). In Proceedings of the 47th ACM technical symposium on computing science education, (pp. 706–706). ACM.
Rogers, C. R. (1954). Toward a theory of creativity. ETC: A Review of General Semantics, 11, 249–260.
Romero, M., Laferriere, T., & Power, T. M. (2016). The move is on! From the passive multimedia learner to the engaged

co-creator. eLearn, 2016(3), 1.
Romero, M., & Loufane (2016). Vibot the robot. Québec, QC: Publications du Québec.
Rourke, A., & Sweller, J. (2009). The worked-example effect using ill-defined problems: Learning to recognise designers’

styles. Learning and Instruction, 19(2), 185–199.
Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D., O’Grady-Cunniff, D., … Verno, A. (2011). CSTA K–12 computer

science standards: Revised 2011.
Selby, C. C., & Woollard, J. (2013). Computational thinking: The developing definition. In Presented at the 18th annual

conference on innovation and Technology in Computer Science Education, Canterbury.
VandenBos, G. R. (Ed.). (2006). APA dictionary of psychology. Washington, DC: American Psychological.
Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences:

Implications for national curriculum policies. Journal of Curriculum Studies, 44(3), 299–321.
Vygotsky, L. S. (1978). Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University

Press.
Wang, X., Schneider, C., & Valacich, J. S. (2015). Enhancing creativity in group collaboration: How performance targets

and feedback shape perceptions and idea generation performance. Computers in Human Behavior, 42, 187–195.
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.
Wing, J. (2011). Research notebook: Computational thinking-What and why? The Link Newsletter, 6, 1–32. Retrieved

from http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf.
Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment for

computational thinking. Journal of Educational Computing Research, 53(4), 562–590.

Romero et al. International Journal of Educational Technology in Higher Education (2017) 14:42 Page 15 of 15

http://link.cs.cmu.edu/files/11-399_The_Link_Newsletter-3.pdf

	Abstract
	Creativity as a context-related process
	From code writing to creative programming
	Computational thinking in the context of creative programming
	Ongoing discussion about computational thinking
	Roots of the computational thinking concept
	Assessment of computational thinking
	Computational thinking components within the #5c21
	Advancing creative programming assessment through the #5c21 model
	Methodology for assessing CT in creative programming activities
	Participants
	Procedure

	Assessment of computational thinking
	Results
	CT assessment using Dr. scratch
	Assessment using #5c21 CT model
	Dr. scratch and #5C21 CT assessment differences

	Discussion on creative diversity assessment
	Contribution of the #5c21 model for creative programming
	Creative programming activities through the lens of the zone of proximal development
	Limits of the study and future research directions

	Acknowledgements
	Funding
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

