Skip to main content

Mobile learning: perspectives

Aprendizaje móvil: perspectivas

Abstract

From a technical perspective, the future of learning is defined by four axes around which technological and methodological efforts revolve. These axes are mobility, interaction, artificial intelligence and technology-based resources such as augmented reality and games applied to learning. Combining them means creating a model of mobile, interactive and intelligent scenarios that take advantage of the spaces and times available to the learner. The various technologies are already available yet used separately in different educational experiences. It is therefore crucial to combine and integrate them into didactic models wherein the learning attained by students is significant. This article discusses these technologies and proposes an integrative model that enables a framework of reference for didactic work to be established. It concludes by highlighting the need to experiment with technologies and to apply the results to teaching-learning models using alternative interaction schema, and the urgency of having intelligent tutoring systems to make tutoring available on a massive scale.

Resumen

El futuro del aprendizaje, desde una perspectiva técnica, está integrado por cuatro ejes que lo definen y sobre los que se articulan esfuerzos tecnológicos y metodológicos. Estos ejes son: la movilidad, la interacción, la inteligencia artificial y recursos basados en tecnología como la realidad aumentada y los juegos aplicados al aprendizaje. Su combinación supone la creación de un modelo de escenarios móviles, interactivos e inteligentes que aprovechan todos los espacios y tiempos disponibles para el aprendiente. Las distintas tecnologías, cada una por su lado, ya están disponibles y son utilizadas en diversas experiencias educativas; lo que se hace necesario es la conjugación de estas a través de modelos didácticos en los que el aprendizaje alcanzado por los estudiantes sea significativo. En este artículo se discuten estas tecnologías y se plantea un modelo de integración que posibilita el establecimiento de un marco referential de trabajo didáctico. Se concluye la necesidad de experimentar tecnologías y plasmar los resultados en modelos de enseñanza-aprendizaje que utilicen esquemas de interacción alternativos y la urgencia de contar con sistemas tutoriales inteligentes para masificar la tutoría.

References

  1. Alejandres Sánchez, H. O., González Serna, J. G., & Vargas Govea, B. A. (2011). Sistemas de recomendación en ambientes organizacionales: estado del arte y tendencias futuras. In IX Congreso nacional sobre innovación y desarrollo tecnológico (pp. 428–434). Mexico.

  2. Azuma, R., Behringer, R., Feiner, S., Julier, S., & Macintyre, B. (2001). Recent Advances in Augmented Reality. IEEE Computer Graphics And Applications, 21(6), 34–47. doi http://dx.doi.org/10.1109/38.963459

    Article  Google Scholar 

  3. Casali, A., Gerling, V., Deco, C., & Bender, C. (2010). Sistema inteligente para la recomendación de objetos de aprendizaje. Generation Digital, 9(1), 88–95.

    Google Scholar 

  4. Castaño-Muñoz, J., Duart, J. M., & Sancho-Vinuesa, T. (2013). The Internet in face-to-face higher education: Can interactive learning improve academic achievement? British Journal of Educational Technology. doi http://dx.doi.org/10.1111/bjet.12007

  5. Cataldi, Z., & Cabero Almenara, J. (2006). Los aportes de la tecnología informática al aprendizaje grupal interactivo. Pixel-Bit. Revista de Medios y Educación, 27, 115–130.

    Google Scholar 

  6. Cobcroft, R., Towers, S., Smith, J., & Bruns, A. (2006). Learning in review: Opportunities and challenges for learners, teachers, and institutions. In Learning on the Move. Brisbane, Australia: OLT. Retrieved from http://eprints.qut.edu.au/5399/1/5399.pdf

    Google Scholar 

  7. Danaher, P., Gururajan, R., & Hafeez-Baig, A. (2009). Transforming the practice of mobile learning: promoting pedagogical innovation through educational principles and strategies that work. In H. Ryu & D. Parsons (Eds.), Innovative mobile learning:Techniques and technologies (pp. 21–46). Hershey: IGI Global.

    Google Scholar 

  8. Deterding, S., Khaled, R., Nacke, L. E., & Dixon, D. (2011). Gamification: Toward a Definition. In Proceedings of the 2011 Workshop Gamification: Using Game Design Elements in Non-Game Contexts. New York, NY: ACM. Retrieved from http://gamification-research.org/wp-content/uploads/2011/04/02-Deterding-Khaled-Nacke-Dixon.pdf

    Google Scholar 

  9. García Salcines, E., Romero Morales, C., Ventura Soto, S., & De Castro Lozano, C. (2008). Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning. IEEE-RITA, 3(1), 19–30.

    Google Scholar 

  10. Gerling, V. (2009). Un sistema inteligente para asistir la búsqueda personalizada de objetos de aprendizaje. Universidad Nacional de Rosario. Retrieved from https://www.fceia.unr.edu.ar/lcc/t523/uploads/21.pdf

  11. Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2011). The horizon report. Media. Austin, TX: The New Media Consortium.

    Google Scholar 

  12. Jong, M., Shang, J., Lee, F.-L., & Lee, J. (2008). Harnessing computer Games in Education. Journal of Distance Education Technologies, 6, 1–9. doi http://dx.doi.org/10.4018/jdet.2008010101

    Article  Google Scholar 

  13. Junco, R., & Cotten, S. (2011). Perceived academic effects of instant messaging use. Computers & Education, 56(2), 370–378. doi http://dx.doi.org/10.1016/j.compedu.2010.08.020

    Article  Google Scholar 

  14. Kearney, M., Schuck, S., Burden, K., & Aubusson, P. (2012). Viewing mobile learning from a pedagogical perspective. Research in Learning Technology, 20. doi http://dx.doi.org/10.3402/rlt.v20i0/14406

  15. Koole, M. L. (2009). A model for framing mobile learning. In M. Ally (Ed.), Empowering learners and educators with mobile learning (pp. 25–47). Athabasca: Athabasca University Press.

    Google Scholar 

  16. Kurzweil, R. (2005). The singularity is near: when human transcend biology. New York, NY: Penguin Group.

    Google Scholar 

  17. Liarokapis, F., & Anderson, E. F. (2010). Using Augmented Reality as a Medium to Assist Teaching in Higher Education. In Eurographics 2010. Norrköping, Sweden: Eurographics Association. Retrieved from http://www.soi.city.ac.uk/fotisl/publications/EG2010.pdf

    Google Scholar 

  18. Liu, C.-C., & Kao, L.-C. (2007). Do handheld devices facilitate face-to-face collaboration? Handheld devices with large shared display groupware to facilitate group interactions. Journal of Computer Assisted Learning, 23, 285–299. doi http://dx.doi.org/10.1111/j.1365-2729.2007.00234.X

    Article  MathSciNet  Google Scholar 

  19. Llorens, F., & Capdeferro, N. (2011). Facebook’s potential for collaborative learning. RUSC. Universities and Knowledge Society Journal, 8(2), 31–45. doi http://dx.doi.org/10.7238/rusc.v8i2.963

    Article  Google Scholar 

  20. Low, L. (2006). Connections: Social and mobile tools for enhancing learning. The Knowledge Tree journal, (12), 1–10. Retrieved from http://robertoigarza.files.wordpress.com/2008/10/art-social-and-mobile-tools-for-enhancing-learning-low-2006.pdf

  21. Low, L., & O’Connell, M. (2006). Learner-centric design of digital mobile learning. En: Learning on the Move. Brisbane, Australia: OLT. Retrieved from http://www.academia.edu/941536/Learner-entric_design_of_digital_mobile_learning

    Google Scholar 

  22. Malone, T. (1980). What makes things fun to learn? A study of intrinsically motivating computer games. Palo Alto, CA: Xerox.

    Google Scholar 

  23. Ozdamli, F. (2012). Pedagogical framework of m-learning. Procedia — Social and Behavioral Sciences, 31, 927–931. doi http://dx.doi.org/10.1016/j.sbspro.2011.12.171

    Article  Google Scholar 

  24. Park, Y. (2011). A Pedagogical Framework for Mobile Learning: Categorizing Educational Applications of Mobile Technologies into Four Types. International Review of Research in Open and Distance Learning, 12(2), 78–102.

    Google Scholar 

  25. Peña, F., & Riffo, R. (2008). Revisión, selección e implementación de un algoritmo de recomendación de material bibliográfico utilizando tecnología {J2EE}. Concepción, Chile: Universidad del BíO-BíO. Retrieved from http://cybertesis.ubiobio.cl/tesis/2008/riffo_r/doc/riffo_r.pdf

    Google Scholar 

  26. Prensky, M. (2003). Digital Game-Based Learning. ACM Computers in Entertainment, 1(1), 1–4. doi http://dx.doi.org/10.1145/950566.950596

    Article  Google Scholar 

  27. Rotter, J. B. (1954). Social learning and clinical psychology. New York, NY: Prentice-Hall. doi http://dx.doi.org/10.1037/10788-000

    Google Scholar 

  28. Sangrà, A., & Wheeler, S. (2013). New informal ways of learning: Or are we formalising the informal? RUSC. Universities and Knowledge Society Journal, 10(1). doi http://dx.doi.org/10.7238/rusc.v10i1.1689

  29. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-Based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th international conference on World Wide Web (pp. 285–295). New York, NY: ACM. doi http://dx.doi.org/10.1145/371920.372071

    Google Scholar 

  30. Siemens, G. (2005). Connectivism: A Learning Theory for the Digital Age. International Journal of Instructional Technology and Distance Learning, 2(1), 3–10.

    Google Scholar 

  31. Stutzman, F. (2007). Social network transitions (Web log post). Retrieved from http://chimprawk.blogspot.com/2007/11/social-network-transitions.html

  32. Thornburg, D., & Mahoney, S. (2009). From Cyberspace to Augmented Reality: Education’s Ongoing Journey on the Internet. Retrieved from http://www.tcse-k12.org/pages/AugmentedReality.pdf

  33. Torres-Diaz, J. C., Jara, I., & Valdiviezo, P. (2013). Integración de redes sociales y entornos virtuales de aprendizaje. Revista de educación a distancia, 35. Retrieved from http://www.um.es/ead/red/35/torres_et_al.pdf

  34. Torrisi-Steele, G. (2006). The making of m-learning spaces. OLT Conference 2006 — Learning on the move. Retrieved from http://research-hub.griffith.edu.au/display/n95dad4ac8b8d95f4f577abc99ef26b48

  35. Valdiviezo, P., Santos, O., & Boticario, J. G. (2010). Aplicación de métodos de diseño centrado en el usuario y minería de datos para definir recomendaciones que promuevan el uso del foro en una experiencia virtual de aprendizaje. RIED, 13(2), 237–264.

    Google Scholar 

  36. Vavoula, G., & Sharpies, M. (2009). Meeting the challenges in evaluating mobile learning: a 3-level evaluation framework. International Journal of Mobile and Blended Learning, 1(2), 54–75. doi http://dx.doi.org/10.4018/jmbl.2009040104

    Article  Google Scholar 

  37. Velez-Langs, O., & Santos, C. (2006). Sistemas recomendadores: Un enfoque desde los algoritmos genéticos. Gestión y Producción, 1(9), 23–31.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Torres Diaz.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torres Diaz, J.C., Infante Moro, A. & Torres Carrión, P.V. Mobile learning: perspectives. Int J Educ Technol High Educ 12, 38–49 (2015). https://doi.org/10.7238/rusc.v12i1.1944

Download citation

Keywords

  • mobile learning
  • artificial intelligence
  • social networks
  • learning models
  • technology

Palabras clave

  • aprendizaje móvil
  • inteligencia artificial
  • redes sociales
  • modelos de aprendizaje
  • tecnología